On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing

Type 1 Diabetes Mellitus (T1DM) is one of the most adverse diseases in the modern era; its treatment is mainly based on exogenous insulin injections. The scientific community has formulated strategies to improve insulin supply using state-of-the-art technology. Therefore, this article develops a mul...

Full description

Autores:
Rios, Yuliana
Garcia-Rodriguez, Julio
Sanchez, Edgar
Alanis, Alma
Ruizvelazquez, Eduardo
Pardo-Garcia, Aldo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12426
Acceso en línea:
https://hdl.handle.net/20.500.12585/12426
Palabra clave:
Glucose; Hypoglycemia;
Insulin Dependent Diabetes Mellitus
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9b2c4b63182895a8be0acf5af49504e2
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12426
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
title On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
spellingShingle On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
Glucose; Hypoglycemia;
Insulin Dependent Diabetes Mellitus
LEMB
title_short On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
title_full On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
title_fullStr On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
title_full_unstemmed On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
title_sort On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing
dc.creator.fl_str_mv Rios, Yuliana
Garcia-Rodriguez, Julio
Sanchez, Edgar
Alanis, Alma
Ruizvelazquez, Eduardo
Pardo-Garcia, Aldo
dc.contributor.author.none.fl_str_mv Rios, Yuliana
Garcia-Rodriguez, Julio
Sanchez, Edgar
Alanis, Alma
Ruizvelazquez, Eduardo
Pardo-Garcia, Aldo
dc.subject.keywords.spa.fl_str_mv Glucose; Hypoglycemia;
Insulin Dependent Diabetes Mellitus
topic Glucose; Hypoglycemia;
Insulin Dependent Diabetes Mellitus
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Type 1 Diabetes Mellitus (T1DM) is one of the most adverse diseases in the modern era; its treatment is mainly based on exogenous insulin injections. The scientific community has formulated strategies to improve insulin supply using state-of-the-art technology. Therefore, this article develops a multi-age glycemic control scheme, which can be implemented in an Artificial Pancreas (AP) device to enhance diabetics treatment. The procedure is based on the implementation of a neuro-fuzzy inverse optimal control (NFIOC) algorithm on the Texas Instrument LAUNCHXLF28069M development board; this controller communicates with the Uva/Padova simulator for diabetics' patients of different ages under predefined meal protocols running on a Personal Computer (PC). The novelty lies in the proposed NFIOC capability to regulate glucose within safe levels for virtual populations of 10 adults, 10 adolescents and, 10 children. © 2022 AECE
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-25T12:10:03Z
dc.date.available.none.fl_str_mv 2023-07-25T12:10:03Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Rios, Y., Garcia-Rodriguez, J., Sanchez, E., Alanis, A., Ruiz-Velazquez, E., & Pardo-Garcia, A. (2022). On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing. Advances in Electrical & Computer Engineering, 22(3).
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12426
dc.identifier.doi.none.fl_str_mv 10.4316/AECE.2022.03001
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Rios, Y., Garcia-Rodriguez, J., Sanchez, E., Alanis, A., Ruiz-Velazquez, E., & Pardo-Garcia, A. (2022). On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing. Advances in Electrical & Computer Engineering, 22(3).
10.4316/AECE.2022.03001
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12426
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Advances in Electrical and Computer Engineering
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/1/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/4/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/5/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdf.jpg
bitstream.checksum.fl_str_mv e2f379cf2f8d6e6bec3f67e7c52b3422
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
8236363f303ddf43d9c83c8aaa33ebf3
be7b14eded5ebb105a42d552e69bef84
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021788051439616
spelling Rios, Yuliana0dbdd108-59ee-4e22-85cd-3de4922f37b4Garcia-Rodriguez, Julio56c041f4-bcc1-44ef-8e3c-a8ec6ea17e4eSanchez, Edgardde5501b-9920-4b9c-8ae4-6378407a487cAlanis, Almae3a9155e-04ad-4ce3-972e-03923c3305beRuizvelazquez, Eduardodafb89f7-ed2f-42a4-865a-b5b932b6c2bePardo-Garcia, Aldo3e44cda3-c4d1-46d1-8551-af25e3f4caa72023-07-25T12:10:03Z2023-07-25T12:10:03Z20222023Rios, Y., Garcia-Rodriguez, J., Sanchez, E., Alanis, A., Ruiz-Velazquez, E., & Pardo-Garcia, A. (2022). On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testing. Advances in Electrical & Computer Engineering, 22(3).https://hdl.handle.net/20.500.12585/1242610.4316/AECE.2022.03001Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarType 1 Diabetes Mellitus (T1DM) is one of the most adverse diseases in the modern era; its treatment is mainly based on exogenous insulin injections. The scientific community has formulated strategies to improve insulin supply using state-of-the-art technology. Therefore, this article develops a multi-age glycemic control scheme, which can be implemented in an Artificial Pancreas (AP) device to enhance diabetics treatment. The procedure is based on the implementation of a neuro-fuzzy inverse optimal control (NFIOC) algorithm on the Texas Instrument LAUNCHXLF28069M development board; this controller communicates with the Uva/Padova simulator for diabetics' patients of different ages under predefined meal protocols running on a Personal Computer (PC). The novelty lies in the proposed NFIOC capability to regulate glucose within safe levels for virtual populations of 10 adults, 10 adolescents and, 10 children. © 2022 AECEapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Advances in Electrical and Computer EngineeringOn Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment: In-Silico Testinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Glucose; Hypoglycemia;Insulin Dependent Diabetes MellitusLEMBCartagena de IndiasInsulin Dependent Diabetes MellitusYang, W., Dall, T.M., Beronjia, K., Lin, J., Semilla, A.P., Chakrabarti, R., Hogan, P.F., (...), Petersen, M.P. Economic costs of diabetes in the U.S. in 2017 (2018) Diabetes Care, 41 (5), pp. 917-928. Cited 1403 times. http://care.diabetesjournals.org/content/41/5/917.full-text.pdf doi: 10.2337/dci18-0007Kim, S. Burden of hospitalizations primarily due to uncontrolled diabetes: Implications of inadequate primary health care in the United States (2007) Diabetes Care, 30 (5), pp. 1281-1282. Cited 99 times. http://care.diabetesjournals.org/cgi/reprint/30/5/1281 doi: 10.2337/dc06-2070Brown, J.B., Pedula, K.L., Bakst, A.W. The progressive cost of complications in type 2 diabetes mellitus (1999) Archives of Internal Medicine, 159 (16), pp. 1873-1880. Cited 197 times. doi: 10.1001/archinte.159.16.1873Yeh, H.-C., Brown, T.T., Maruthur, N., Ranasinghe, P., Berger, Z., Suh, Y.D., Wilson, L.M., (...), Golden, S.H. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus: A systematic review and meta-analysis (2012) Annals of Internal Medicine, 157 (5), pp. 336-347. Cited 405 times. http://annals.org/data/Journals/AIM/24808/0000605-201209040-00006.pdf doi: 10.7326/0003-4819-157-5-201209040-00508Rios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 9 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197Alanis, A.Y., Rios, Y., García-Rodríguez, J.A., Sanchez, E.N., Ruiz-Velázquez, E., Garcia, A.P. Neuro-fuzzy inverse optimal control incorporating a multistep predictor as applied to T1DM patients (2020) Control Applications for Biomedical Engineering Systems, pp. 1-24. Cited 2 times. https://www.sciencedirect.com/book/9780128174616/control-applications-for-biomedical-engineering-systems ISBN: 978-012817461-6 doi: 10.1016/B978-0-12-817461-6.00001-9Rios, Y.Y., Garcia-Rodriguez, J.A., Sanchez, E.N., Alanis, A.Y., Ruiz-Velazquez, E. Rapid Prototyping of Neuro-Fuzzy Inverse Optimal Control as Applied to T1DM Patients (Open Access) (2018) 2018 IEEE Latin American Conference on Computational Intelligence, LA-CCI 2018, art. no. 8625241. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8609898 ISBN: 978-153864625-0 doi: 10.1109/LA-CCI.2018.8625241Pes, P., Herrero, P., Reddy, M., Xenou, M., Oliver, N., Johnston, D., Toumazou, C., (...), Georgiou, P. An advanced bolus calculator for type 1 diabetes: System architecture and usability results (2016) IEEE Journal of Biomedical and Health Informatics, 20 (1), art. no. 7174940, pp. 11-17. Cited 40 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2015.2464088Turksoy, K., Samadi, S., Feng, J., Littlejohn, E., Quinn, L., Cinar, A. Meal detection in patients with type 1 diabetes: A new module for the multivariable adaptive artificial pancreas control system (2016) IEEE Journal of Biomedical and Health Informatics, 20 (1), art. no. 7124410, pp. 47-54. Cited 102 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221020 doi: 10.1109/JBHI.2015.2446413Thabit, H., Hovorka, R. Coming of age: the artificial pancreas for type 1 diabetes (2016) Diabetologia, 59 (9), pp. 1795-1805. Cited 171 times. link.springer.de/link/service/journals/00125/index.htm doi: 10.1007/s00125-016-4022-4Kropff, J., Del Favero, S., Place, J., Toffanin, C., Visentin, R., Monaro, M., Messori, M., (...), Magni, L. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: A randomised crossover trial (2015) The Lancet Diabetes and Endocrinology, 3 (12), pp. 939-947. Cited 185 times. http://www.journals.elsevier.com/the-lancet-diabetes-and-endocrinology doi: 10.1016/S2213-8587(15)00335-6Quintero-Manriquez, E., Sanchez, E.N., Harley, R.G., Li, S., Felix, R.A. Neural Inverse Optimal Control Implementation for Induction Motors via Rapid Control Prototyping (Open Access) (2019) IEEE Transactions on Power Electronics, 34 (6), art. no. 8464291, pp. 5981-5992. Cited 23 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2018.2870159Gurubel, K.J., Sanchez, E.N., Coronado-Mendoza, A., Zuniga-Grajeda, V., Sulbaran-Rangel, B., Breton-Deval, L. Inverse optimal neural control via passivity approach for nonlinear anaerobic bioprocesses with biofuels production (Open Access) (2019) Optimal Control Applications and Methods, 40 (5), pp. 848-858. Cited 5 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1514 doi: 10.1002/oca.2513Chan, V.M., Hernandez-Vargas, E.A., Sanchez, E.N. Neural inverse optimal control applied to design therapeutic options for patients with COVID-19 (2021) Proceedings of the International Joint Conference on Neural Networks, 2021-July. Cited 2 times. ISBN: 978-073813366-9 doi: 10.1109/IJCNN52387.2021.9534240Chen, T., Babanin, A., Muhammad, A., Chapron, B., Chen, C. Modified evolved bat algorithm of fuzzy optimal control for complex nonlinear systems (Open Access) (2020) Romanian Journal of Information Science and Technology, 23 (T), pp. T28-T40. Cited 50 times. http://www.romjist.ro/full-texts/paper672.pdfKarahoca, A., Karahoca, D., Kara, A. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems (2009) ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, art. no. 5379497. Cited 11 times. ISBN: 978-142443428-2 doi: 10.1109/ICSCCW.2009.5379497Geman, O., Chiuchisan, I., Toderean, R. Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction (Open Access) (2017) 2017 E-Health and Bioengineering Conference, EHB 2017, art. no. 7995505, pp. 639-642. Cited 30 times. ISBN: 978-153860358-1 doi: 10.1109/EHB.2017.7995505Lekkas, S., Mikhailov, L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases (Open Access) (2010) Artificial Intelligence in Medicine, 50 (2), pp. 117-126. Cited 76 times. doi: 10.1016/j.artmed.2010.05.007Nath, A., Dey, R., Balas, V.E. Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control (2018) Advances in Intelligent Systems and Computing, 634, pp. 286-296. Cited 10 times. http://www.springer.com/series/11156 ISBN: 978-331962523-2 doi: 10.1007/978-3-319-62524-9_23Trevitt, S., Simpson, S., Wood, A. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development? (2016) Journal of Diabetes Science and Technology, 10 (3), pp. 714-723. Cited 127 times. http://dst.sagepub.com/content/by/year doi: 10.1177/1932296815617968Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features (2014) Journal of Diabetes Science and Technology, 8 (1), pp. 26-34. Cited 497 times. doi: 10.1177/1932296813514502Kovatchev, B.P., Breton, M., Dalla Man, C., Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes (2009) Journal of Diabetes Science and Technology, 3 (1), pp. 44-55. Cited 595 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300106Alanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (Open Access) (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 151 times. doi: 10.1109/TNN.2007.899170Chen, P.-A., Chang, L.-C., Chang, F.-J. Reinforced recurrent neural networks for multi-step-ahead flood forecasts (Open Access) (2013) Journal of Hydrology, 497, pp. 71-79. Cited 108 times. doi: 10.1016/j.jhydrol.2013.05.038Ohsawa, T., Bloch, A.M., Leok, M. Discrete Hamilton-Jacobi theory and discrete optimal control (2010) Proceedings of the IEEE Conference on Decision and Control, art. no. 5717665, pp. 5438-5443. Cited 39 times. ISBN: 978-142447745-6 doi: 10.1109/CDC.2010.5717665Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof (2008) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (4), pp. 943-949. Cited 821 times. doi: 10.1109/TSMCB.2008.926614Sanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (Open Access) (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 38 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779Li, W., Todorov, E., Liu, D. Inverse optimality design for biological movement systems (2011) IFAC Proceedings Volumes (IFAC-PapersOnline), 44 (1 PART 1), pp. 9662-9667. Cited 25 times. http://www.ifac-papersonline.net/browser?browse=c ISBN: 978-390266193-7 doi: 10.3182/20110828-6-IT-1002.00877Ornelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (Open Access) (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 33 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461Ornelas-Tellez, F., Sanchez, E.N., Loukianov, A.G., Navarro-Lopez, E.M. Speed-gradient inverse optimal control for discrete-time nonlinear systems (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6160374, pp. 290-295. Cited 27 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6160374Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (Open Access) (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients), pp. 1-1331. Cited 3165 times. http://nap.edu/10490 ISBN: 030908525X; 978-030908525-0 doi: 10.17226/10490http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdfScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdfapplication/pdf181313https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/1/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdfe2f379cf2f8d6e6bec3f67e7c52b3422MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdf.txtScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdf.txtExtracted texttext/plain2907https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/4/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdf.txt8236363f303ddf43d9c83c8aaa33ebf3MD54THUMBNAILScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdf.jpgScopus - Document details - On Board Neuro Fuzzy Inverse Optimal Control for Type 1 Diabetes Mellitus Treatment_ In-Silico Testing.pdf.jpgGenerated Thumbnailimage/jpeg6718https://repositorio.utb.edu.co/bitstream/20.500.12585/12426/5/Scopus%20-%20Document%20details%20-%20On%20Board%20Neuro%20Fuzzy%20Inverse%20Optimal%20Control%20for%20Type%201%20Diabetes%20Mellitus%20Treatment_%20In-Silico%20Testing.pdf.jpgbe7b14eded5ebb105a42d552e69bef84MD5520.500.12585/12426oai:repositorio.utb.edu.co:20.500.12585/124262023-07-26 00:17:41.655Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=