Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction wit...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9056
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9056
- Palabra clave:
- Bandpass filters
Bandwidth
Crystal filters
Liquid crystal polymers
Liquid crystals
Loading
Low temperature effects
Metal drawing
Micromachining
Microwave circuits
Optical resonators
Ring gages
Size determination
Substrates
Surface micromachining
Temperature
Waveguide filters
Waveguides
Wearable technology
Complementary split ring resonators
Complementary split-ring resonator
Evanescent wave amplification
Fractional bandwidths
Liquid crystal polymer substrate (LCP)
Measured results
Mechanical drilling
Surface micromachining process
Substrate integrated waveguides
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_9a94493a5546a7f4ffde03a56f6a3fb5 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9056 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
title |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
spellingShingle |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications Bandpass filters Bandwidth Crystal filters Liquid crystal polymers Liquid crystals Loading Low temperature effects Metal drawing Micromachining Microwave circuits Optical resonators Ring gages Size determination Substrates Surface micromachining Temperature Waveguide filters Waveguides Wearable technology Complementary split ring resonators Complementary split-ring resonator Evanescent wave amplification Fractional bandwidths Liquid crystal polymer substrate (LCP) Measured results Mechanical drilling Surface micromachining process Substrate integrated waveguides |
title_short |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
title_full |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
title_fullStr |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
title_full_unstemmed |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
title_sort |
Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications |
dc.subject.keywords.none.fl_str_mv |
Bandpass filters Bandwidth Crystal filters Liquid crystal polymers Liquid crystals Loading Low temperature effects Metal drawing Micromachining Microwave circuits Optical resonators Ring gages Size determination Substrates Surface micromachining Temperature Waveguide filters Waveguides Wearable technology Complementary split ring resonators Complementary split-ring resonator Evanescent wave amplification Fractional bandwidths Liquid crystal polymer substrate (LCP) Measured results Mechanical drilling Surface micromachining process Substrate integrated waveguides |
topic |
Bandpass filters Bandwidth Crystal filters Liquid crystal polymers Liquid crystals Loading Low temperature effects Metal drawing Micromachining Microwave circuits Optical resonators Ring gages Size determination Substrates Surface micromachining Temperature Waveguide filters Waveguides Wearable technology Complementary split ring resonators Complementary split-ring resonator Evanescent wave amplification Fractional bandwidths Liquid crystal polymer substrate (LCP) Measured results Mechanical drilling Surface micromachining process Substrate integrated waveguides |
description |
In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings - Electronic Components and Technology Conference; pp. 789-795 |
dc.identifier.isbn.none.fl_str_mv |
9781479924073 |
dc.identifier.issn.none.fl_str_mv |
05695503 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9056 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ECTC.2014.6897375 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
36698427600 56297560700 36698143800 7402126778 |
identifier_str_mv |
Proceedings - Electronic Components and Technology Conference; pp. 789-795 9781479924073 05695503 10.1109/ECTC.2014.6897375 Universidad Tecnológica de Bolívar Repositorio UTB 36698427600 56297560700 36698143800 7402126778 |
url |
https://hdl.handle.net/20.500.12585/9056 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
27 May 2014 through 30 May 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0dd Scopus2-s2.0-84907907384 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
64th Electronic Components and Technology Conference, ECTC 2014 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9056/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021632153354240 |
spelling |
2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Proceedings - Electronic Components and Technology Conference; pp. 789-795978147992407305695503https://hdl.handle.net/20.500.12585/905610.1109/ECTC.2014.6897375Universidad Tecnológica de BolívarRepositorio UTB3669842760056297560700366981438007402126778In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE.IEEE Components, Packaging, and Manufacturing Technology Society (CPMT)Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0ddScopus2-s2.0-8490790738464th Electronic Components and Technology Conference, ECTC 2014Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applicationsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBandpass filtersBandwidthCrystal filtersLiquid crystal polymersLiquid crystalsLoadingLow temperature effectsMetal drawingMicromachiningMicrowave circuitsOptical resonatorsRing gagesSize determinationSubstratesSurface micromachiningTemperatureWaveguide filtersWaveguidesWearable technologyComplementary split ring resonatorsComplementary split-ring resonatorEvanescent wave amplificationFractional bandwidthsLiquid crystal polymer substrate (LCP)Measured resultsMechanical drillingSurface micromachining processSubstrate integrated waveguides27 May 2014 through 30 May 2014Senior D.E.Rahimi A.Jao, P.F.Yoon, Y.K.Yuce, M.R., Ho, C.K., Moo, S.C., Wideband communication for implantable and wearable systems (2009) IEEE Trans. Microwave Theory and Techniques, 57 (10), p. 2597. , 2604, OctZhewang, M., Ohira, M., Chen, C.P., Anada, T., A novel compact high-performance microstrip 26 GHz ultrawideband (UWB) bandpass filter for vehicle radar systems (2012) Proc. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), p. 1. , 4, 18-20 SeptJain, V., Sundararaman, S., Heydari, P., A 22-29-GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS (2009) IEEE Trans. Microwave Theory and Techniques, 57 (8), p. 1903. , 1914, AugTeo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μ W wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE Journal of Solid-state Circuits, 45 (11), p. 2292. , 2299, NovAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Interational Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 MarchTorfs, T., Sterken, T., Brebels, S., Santana, J., Van Den Hoven, R., Spiering, V., Bertsch, N., Zonta, D., Low power wireless sensor network for building monitoring (2013) IEEE Sensors Journal, 13 (3), p. 909. , 915, MarchBrown, L., Grundlehner, B., Van De Molengraft, J., Penders, J., Gyselinckx, B., Body area network for monitoring autonomic nervous system responses (2009) Proc. 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009., p. 1. , 3, 1-3 AprilKim, C., (2010) Chapter 2. Ultra-wideband Antenna in Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment, , IN-TECH, MarchHao, Z.-C., Hong, J.-S., Parry, J.P., Hand, D.P., Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure (2009) IEEE Trans. Microwave Theory and Techniques, 57 (12), p. 3080. , 3088, DecYang, G.-M., Jin, R., Vittoria, C., Harris, V.G., Sun, N.X., Small ultra-wideband (UWB) bandpass filter with notched band (2008) IEEE Microwave and Wireless Components Letters, 18 (3), p. 176. , 178, MarchChen, K.-R., Sim, C.-Y.-D., Row, J.-S., A compact monopole antenna for super wideband applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 488-491Zhang, X., Karnfelt, C., Liu, J., Ma, S., Xu, W., Meng, L., Zirath, H., Realization of ultra wideband bandpass filter based on LCP substrate for wireless application (2007) Proc. International Symposium on High Density Packaging and Microsystem Integration, 2007. HDP'07, p. 1. , 5, 26-28 JuneKim, C., Kim, J.K., Kim, K.T., Yoon, Y.-K., Micromachined wearable/foldable super wideband (SWA) monopole antenna based on a flexible liquid crystal polymer (LCP) substrate toward imaging/sensing/health monitoring systems (2013) Proce. IEEE Electronic Components and Technology Conference (ECTC), p. 1926. , Las Vegas, NV, 1932, 28-31 MayAlomainy, A., Sani, A., Rahman, A., Santas, J.G., Hao, Y., Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications (2009) IEEE Trans. Antennas and Propagation, 57 (4), p. 875. , 884, AprilYarovoy, A., Ultra-wideband radars for high-resolution imaging and target classification (2007) Proc. 4th European Radar Conference (EuRAD), , Munich, Germany, Oct. 10-12Ye, S., Zhou, B., Fang, G., Design of a novel ultrawideband digital receiver for pulse ground penetrating radar (2011) IEEE Geosci. Remote Sens. Lett., 8 (4), pp. 656-660. , JulyHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, p. 8. , New York: WileyHao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microwave Magazine, 11 (4), pp. 56-68Zhu, L., Sun, S., Menzel, W., Ultra-wideband (UWB) bandpass filter using multiple-mode resonator (2005) IEEE Microw. Wireless Compon. Lett., 15 (11), pp. 796-798. , NovChien, H., Shen, T., Huang, T., Wang, W., Wu, R., Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC (2009) IEEE Trans. Microwave Theory & Tech, 57 (7), p. 1774. , 1782, JulyDuong, T.H., Kim, I.S., New elliptic funtion type UWB BPF based on capacitively coupled λ/4 open t resonator (2009) IEEE Trans. Microw. Theory Tech., 57 (12), pp. 3089-3098. , DecZhang, T.T., Johnson, W., Farrell, B., St. Lawrence, M., The processing and assembly of liquid crystalline polymer printed circuits (2002) 2002 in Proc. Int. Symp. on MicroelectronicsThompson, D.C., Tantot, O., Jallageas, H., Ponchak, G.E., Tentzeris, M.M., Papapolymerou, J., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30-110 GHz (2004) IEEE Trans. Microw. Theory Tech., 52 (4), pp. 1343-1352. , AprDavis, M.F., Yoon, S.-W., Pinel, S., Lim, K., Laskar, J., Liquid crystal polymer-based integrated passive development for RF applications (2003) Proc. IEEE Int. Microwave Symp., 2, pp. 1155-1158Wu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Proc. Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service, 1, pp. III-IX. , OctSenior, D.E., (2012) Advanced Metamaterial Circuits for Microwave and Millimeter Wave Applications, , PhD Dissertation. Gainesville, FL. University of FloridaDong, Y., Itoh, T., Promising future of metamaterials (2012) IEEE Microwave Magazine, 13 (2), p. 39. , 56, March-AprilZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Symposium, pp. 95-98. , JanZhang, S., Bian, T., Zhai, Y., Liu, W., Yang, G., Liu, F., Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs (2012) Microw. Journal, 55 (5), pp. 200-208. , MayPozar, D.M., (2005) Microwave Engineering, , 3d, ed. New York, Wiley & Sonshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9056/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9056oai:repositorio.utb.edu.co:20.500.12585/90562023-05-26 13:50:45.764Repositorio Institucional UTBrepositorioutb@utb.edu.co |