Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications

In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction wit...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9056
Acceso en línea:
https://hdl.handle.net/20.500.12585/9056
Palabra clave:
Bandpass filters
Bandwidth
Crystal filters
Liquid crystal polymers
Liquid crystals
Loading
Low temperature effects
Metal drawing
Micromachining
Microwave circuits
Optical resonators
Ring gages
Size determination
Substrates
Surface micromachining
Temperature
Waveguide filters
Waveguides
Wearable technology
Complementary split ring resonators
Complementary split-ring resonator
Evanescent wave amplification
Fractional bandwidths
Liquid crystal polymer substrate (LCP)
Measured results
Mechanical drilling
Surface micromachining process
Substrate integrated waveguides
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9a94493a5546a7f4ffde03a56f6a3fb5
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9056
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
title Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
spellingShingle Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
Bandpass filters
Bandwidth
Crystal filters
Liquid crystal polymers
Liquid crystals
Loading
Low temperature effects
Metal drawing
Micromachining
Microwave circuits
Optical resonators
Ring gages
Size determination
Substrates
Surface micromachining
Temperature
Waveguide filters
Waveguides
Wearable technology
Complementary split ring resonators
Complementary split-ring resonator
Evanescent wave amplification
Fractional bandwidths
Liquid crystal polymer substrate (LCP)
Measured results
Mechanical drilling
Surface micromachining process
Substrate integrated waveguides
title_short Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
title_full Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
title_fullStr Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
title_full_unstemmed Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
title_sort Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications
dc.subject.keywords.none.fl_str_mv Bandpass filters
Bandwidth
Crystal filters
Liquid crystal polymers
Liquid crystals
Loading
Low temperature effects
Metal drawing
Micromachining
Microwave circuits
Optical resonators
Ring gages
Size determination
Substrates
Surface micromachining
Temperature
Waveguide filters
Waveguides
Wearable technology
Complementary split ring resonators
Complementary split-ring resonator
Evanescent wave amplification
Fractional bandwidths
Liquid crystal polymer substrate (LCP)
Measured results
Mechanical drilling
Surface micromachining process
Substrate integrated waveguides
topic Bandpass filters
Bandwidth
Crystal filters
Liquid crystal polymers
Liquid crystals
Loading
Low temperature effects
Metal drawing
Micromachining
Microwave circuits
Optical resonators
Ring gages
Size determination
Substrates
Surface micromachining
Temperature
Waveguide filters
Waveguides
Wearable technology
Complementary split ring resonators
Complementary split-ring resonator
Evanescent wave amplification
Fractional bandwidths
Liquid crystal polymer substrate (LCP)
Measured results
Mechanical drilling
Surface micromachining process
Substrate integrated waveguides
description In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:51Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:51Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings - Electronic Components and Technology Conference; pp. 789-795
dc.identifier.isbn.none.fl_str_mv 9781479924073
dc.identifier.issn.none.fl_str_mv 05695503
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9056
dc.identifier.doi.none.fl_str_mv 10.1109/ECTC.2014.6897375
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 36698427600
56297560700
36698143800
7402126778
identifier_str_mv Proceedings - Electronic Components and Technology Conference; pp. 789-795
9781479924073
05695503
10.1109/ECTC.2014.6897375
Universidad Tecnológica de Bolívar
Repositorio UTB
36698427600
56297560700
36698143800
7402126778
url https://hdl.handle.net/20.500.12585/9056
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 27 May 2014 through 30 May 2014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0dd
Scopus2-s2.0-84907907384
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 64th Electronic Components and Technology Conference, ECTC 2014
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9056/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397581610385408
spelling 2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Proceedings - Electronic Components and Technology Conference; pp. 789-795978147992407305695503https://hdl.handle.net/20.500.12585/905610.1109/ECTC.2014.6897375Universidad Tecnológica de BolívarRepositorio UTB3669842760056297560700366981438007402126778In this paper the flexible Liquid Crystal Polymer (LCP) substrate is used to implement broadband wearable/foldable conformal bandpass filters that use compact cavity resonators working under the principle of quarter mode substrate integrated waveguide (QMSIW), which features a 75% size reduction with respect to the conventional substrate integrated waveguide (SIW) counterpart. Further size reduction is realized with the use of a complementary split ring resonator (CSRR) metamaterial unit cell integrated with the QMSIW architecture. The resulting CSRR-loaded QMSIW cavity has its main resonance frequency below the quasi-TE<inf>0.5,0,0.5</inf> resonance mode of the original QMSIW cavity due to the evanescent wave amplification phenomenon with CSRR loading. A low temperature surface micromachining process on the LCP and mechanical drilling of via holes are used for fabrication. The realized CSRR-loaded QMSIW cavity features a moderate quality factor (Q) that makes it useful for the design of bandpass filters with much broader fractional bandwidth (FBW) when compared to those using conventional SIW cavities. A 2nd order and a 3rd order surface micromachined Chebyshev BPFs are demonstrated for operation at a center frequency of 25.5 GHz. More than 11% FBW with an in-band return loss of better than 20 dB and an insertion loss of less than 1.5 dB, including transitions, are obtained for both filters. Theoretical analysis of the working principle is explained. Measured results are in good agreement with the 3D full wave structure simulations. © 2014 IEEE.IEEE Components, Packaging, and Manufacturing Technology Society (CPMT)Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84907907384&doi=10.1109%2fECTC.2014.6897375&partnerID=40&md5=e99e876d4b80d420572df399b85bc0ddScopus2-s2.0-8490790738464th Electronic Components and Technology Conference, ECTC 2014Flexible Liquid Crystal Polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applicationsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fBandpass filtersBandwidthCrystal filtersLiquid crystal polymersLiquid crystalsLoadingLow temperature effectsMetal drawingMicromachiningMicrowave circuitsOptical resonatorsRing gagesSize determinationSubstratesSurface micromachiningTemperatureWaveguide filtersWaveguidesWearable technologyComplementary split ring resonatorsComplementary split-ring resonatorEvanescent wave amplificationFractional bandwidthsLiquid crystal polymer substrate (LCP)Measured resultsMechanical drillingSurface micromachining processSubstrate integrated waveguides27 May 2014 through 30 May 2014Senior D.E.Rahimi A.Jao, P.F.Yoon, Y.K.Yuce, M.R., Ho, C.K., Moo, S.C., Wideband communication for implantable and wearable systems (2009) IEEE Trans. Microwave Theory and Techniques, 57 (10), p. 2597. , 2604, OctZhewang, M., Ohira, M., Chen, C.P., Anada, T., A novel compact high-performance microstrip 26 GHz ultrawideband (UWB) bandpass filter for vehicle radar systems (2012) Proc. IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), p. 1. , 4, 18-20 SeptJain, V., Sundararaman, S., Heydari, P., A 22-29-GHz UWB pulse-radar receiver front-end in 0.18-μm CMOS (2009) IEEE Trans. Microwave Theory and Techniques, 57 (8), p. 1903. , 1914, AugTeo, T.H., Qian, X., Gopalakrishnan, K.P., Hwan, Y.S., Haridas, K., Pang, C.Y., Cha, H.-K., Je, M., A 700-μ W wireless sensor node SoC for continuous real-time health monitoring (2010) IEEE Journal of Solid-state Circuits, 45 (11), p. 2292. , 2299, NovAlhawari, M., Khandoker, A., Mohammad, B., Saleh, H., Khalaf, K., Al-Qutayri, M., Yapici, M.K., Ismail, M., Energy efficient system-on-chip architecture for noninvasive mobile monitoring of diabetics (2013) Proc. Interational Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2013 8th, p. 180. , 181, 26-28 MarchTorfs, T., Sterken, T., Brebels, S., Santana, J., Van Den Hoven, R., Spiering, V., Bertsch, N., Zonta, D., Low power wireless sensor network for building monitoring (2013) IEEE Sensors Journal, 13 (3), p. 909. , 915, MarchBrown, L., Grundlehner, B., Van De Molengraft, J., Penders, J., Gyselinckx, B., Body area network for monitoring autonomic nervous system responses (2009) Proc. 3rd International Conference on Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009., p. 1. , 3, 1-3 AprilKim, C., (2010) Chapter 2. Ultra-wideband Antenna in Microwave and Millimeter Wave Technologies Modern UWB Antennas and Equipment, , IN-TECH, MarchHao, Z.-C., Hong, J.-S., Parry, J.P., Hand, D.P., Ultra-wideband bandpass filter with multiple notch bands using nonuniform periodical slotted ground structure (2009) IEEE Trans. Microwave Theory and Techniques, 57 (12), p. 3080. , 3088, DecYang, G.-M., Jin, R., Vittoria, C., Harris, V.G., Sun, N.X., Small ultra-wideband (UWB) bandpass filter with notched band (2008) IEEE Microwave and Wireless Components Letters, 18 (3), p. 176. , 178, MarchChen, K.-R., Sim, C.-Y.-D., Row, J.-S., A compact monopole antenna for super wideband applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 488-491Zhang, X., Karnfelt, C., Liu, J., Ma, S., Xu, W., Meng, L., Zirath, H., Realization of ultra wideband bandpass filter based on LCP substrate for wireless application (2007) Proc. International Symposium on High Density Packaging and Microsystem Integration, 2007. HDP'07, p. 1. , 5, 26-28 JuneKim, C., Kim, J.K., Kim, K.T., Yoon, Y.-K., Micromachined wearable/foldable super wideband (SWA) monopole antenna based on a flexible liquid crystal polymer (LCP) substrate toward imaging/sensing/health monitoring systems (2013) Proce. IEEE Electronic Components and Technology Conference (ECTC), p. 1926. , Las Vegas, NV, 1932, 28-31 MayAlomainy, A., Sani, A., Rahman, A., Santas, J.G., Hao, Y., Transient characteristics of wearable antennas and radio propagation channels for ultrawideband body-centric wireless communications (2009) IEEE Trans. Antennas and Propagation, 57 (4), p. 875. , 884, AprilYarovoy, A., Ultra-wideband radars for high-resolution imaging and target classification (2007) Proc. 4th European Radar Conference (EuRAD), , Munich, Germany, Oct. 10-12Ye, S., Zhou, B., Fang, G., Design of a novel ultrawideband digital receiver for pulse ground penetrating radar (2011) IEEE Geosci. Remote Sens. Lett., 8 (4), pp. 656-660. , JulyHong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/Microwave Applications, p. 8. , New York: WileyHao, Z.-C., Hong, J.-S., Ultrawideband filter technologies (2010) IEEE, Microwave Magazine, 11 (4), pp. 56-68Zhu, L., Sun, S., Menzel, W., Ultra-wideband (UWB) bandpass filter using multiple-mode resonator (2005) IEEE Microw. Wireless Compon. Lett., 15 (11), pp. 796-798. , NovChien, H., Shen, T., Huang, T., Wang, W., Wu, R., Miniaturized bandpass filters with double-folded substrate integrated waveguide resonators in LTCC (2009) IEEE Trans. Microwave Theory & Tech, 57 (7), p. 1774. , 1782, JulyDuong, T.H., Kim, I.S., New elliptic funtion type UWB BPF based on capacitively coupled λ/4 open t resonator (2009) IEEE Trans. Microw. Theory Tech., 57 (12), pp. 3089-3098. , DecZhang, T.T., Johnson, W., Farrell, B., St. Lawrence, M., The processing and assembly of liquid crystalline polymer printed circuits (2002) 2002 in Proc. Int. Symp. on MicroelectronicsThompson, D.C., Tantot, O., Jallageas, H., Ponchak, G.E., Tentzeris, M.M., Papapolymerou, J., Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30-110 GHz (2004) IEEE Trans. Microw. Theory Tech., 52 (4), pp. 1343-1352. , AprDavis, M.F., Yoon, S.-W., Pinel, S., Lim, K., Laskar, J., Liquid crystal polymer-based integrated passive development for RF applications (2003) Proc. IEEE Int. Microwave Symp., 2, pp. 1155-1158Wu, K., Deslandes, D., Cassivi, Y., The substrate integrated circuits-A new concept for high frequency electronics and optoelectronics (2003) Proc. Conference on Telecommunications in Modern Satellite Cable and Broadcasting Service, 1, pp. III-IX. , OctSenior, D.E., (2012) Advanced Metamaterial Circuits for Microwave and Millimeter Wave Applications, , PhD Dissertation. Gainesville, FL. University of FloridaDong, Y., Itoh, T., Promising future of metamaterials (2012) IEEE Microwave Magazine, 13 (2), p. 39. , 56, March-AprilZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proc. IEEE Radio and Wireless Symposium, pp. 95-98. , JanZhang, S., Bian, T., Zhai, Y., Liu, W., Yang, G., Liu, F., Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs (2012) Microw. Journal, 55 (5), pp. 200-208. , MayPozar, D.M., (2005) Microwave Engineering, , 3d, ed. New York, Wiley & Sonshttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9056/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9056oai:repositorio.utb.edu.co:20.500.12585/90562023-05-26 13:50:45.764Repositorio Institucional UTBrepositorioutb@utb.edu.co