Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling

Cosmic rays measured through neutron monitors on Earth’s surface have a strong correlation with the number of sunspots on the solar photosphere. Other indices that affect the dynamics of the heliosphere and distortions in the Earth’s geomagnetic field also exhibit significant correlations. Typically...

Full description

Autores:
D Sierra-Porta
Tarazona-Alvarado, M
Villalba-Acevedo, Jorge
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12084
Acceso en línea:
https://hdl.handle.net/20.500.12585/12084
Palabra clave:
Cosmic rays
Sun dynamics
Modelling
Heliospheric Abundances
Photosphere
Solar wind
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_9a4d595811a10c0e00614466ea105be6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12084
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
title Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
spellingShingle Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
Cosmic rays
Sun dynamics
Modelling
Heliospheric Abundances
Photosphere
Solar wind
LEMB
title_short Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
title_full Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
title_fullStr Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
title_full_unstemmed Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
title_sort Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling
dc.creator.fl_str_mv D Sierra-Porta
Tarazona-Alvarado, M
Villalba-Acevedo, Jorge
dc.contributor.author.none.fl_str_mv D Sierra-Porta
Tarazona-Alvarado, M
Villalba-Acevedo, Jorge
dc.subject.keywords.spa.fl_str_mv Cosmic rays
Sun dynamics
Modelling
Heliospheric Abundances
Photosphere
Solar wind
topic Cosmic rays
Sun dynamics
Modelling
Heliospheric Abundances
Photosphere
Solar wind
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Cosmic rays measured through neutron monitors on Earth’s surface have a strong correlation with the number of sunspots on the solar photosphere. Other indices that affect the dynamics of the heliosphere and distortions in the Earth’s geomagnetic field also exhibit significant correlations. Typically, studies focus on these indices individually or combine some into a smaller set of estimators. This study uses Structural Equation Modeling to examine relationships between a broad range of parameters of solar dynamics and cosmic ray intensity (measured by the Moscow neutron monitor) across several solar cycles from 1976 to present day. The study also classifies these indices into three distinct contributions: Photosphere, Solar Wind and Terrestrial Geomagnetic Field Distortions. Regression models were built for all solar cycles and the complete cosmic ray series from 1976 to the present, resulting in good estimators with calculated p-values below 0.05 (95% confidence). Relationships among all contributions were determined using their estimators.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-02T18:24:07Z
dc.date.available.none.fl_str_mv 2023-06-02T18:24:07Z
dc.date.issued.none.fl_str_mv 2023-03-06
dc.date.submitted.none.fl_str_mv 2023-06-02
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv D. Sierra-Porta, M. Tarazona-Alvarado, Jorge Villalba-Acevedo. (2023). Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling. Advances in Space Research, 72(2). https://doi.org/10.1016/j.asr.2023.02.044
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12084
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv D. Sierra-Porta, M. Tarazona-Alvarado, Jorge Villalba-Acevedo. (2023). Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling. Advances in Space Research, 72(2). https://doi.org/10.1016/j.asr.2023.02.044
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12084
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Advances in Space Research - Vol. 72 No. 1 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/1/1-s2.0-S0273117723001746-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/4/1-s2.0-S0273117723001746-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/5/1-s2.0-S0273117723001746-main.pdf.jpg
bitstream.checksum.fl_str_mv f8b3e396b1880502914eeb39256dfac7
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
d74b1f235eb57aab6bb3689a368bc112
50779ded598ce0f37bfbb7042faee490
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021710740979712
spelling D Sierra-Porta001defe6-8659-41ab-9b50-b89ab8bf851fTarazona-Alvarado, M07ff79c4-490f-4bef-822c-503bf551b375Villalba-Acevedo, Jorged86da205-1448-4258-971f-9e1f852f8dd82023-06-02T18:24:07Z2023-06-02T18:24:07Z2023-03-062023-06-02D. Sierra-Porta, M. Tarazona-Alvarado, Jorge Villalba-Acevedo. (2023). Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling. Advances in Space Research, 72(2). https://doi.org/10.1016/j.asr.2023.02.044https://hdl.handle.net/20.500.12585/12084Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarCosmic rays measured through neutron monitors on Earth’s surface have a strong correlation with the number of sunspots on the solar photosphere. Other indices that affect the dynamics of the heliosphere and distortions in the Earth’s geomagnetic field also exhibit significant correlations. Typically, studies focus on these indices individually or combine some into a smaller set of estimators. This study uses Structural Equation Modeling to examine relationships between a broad range of parameters of solar dynamics and cosmic ray intensity (measured by the Moscow neutron monitor) across several solar cycles from 1976 to present day. The study also classifies these indices into three distinct contributions: Photosphere, Solar Wind and Terrestrial Geomagnetic Field Distortions. Regression models were built for all solar cycles and the complete cosmic ray series from 1976 to the present, resulting in good estimators with calculated p-values below 0.05 (95% confidence). Relationships among all contributions were determined using their estimators.Pdfapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Advances in Space Research - Vol. 72 No. 1 (2023)Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modelinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Cosmic raysSun dynamicsModellingHeliospheric AbundancesPhotosphereSolar windLEMBCartagena de IndiasPúblico generalAnderson, J.C., Gerbing, D.W., 1988. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 103, 411–423. https://doi.org/10.1037/0033-2909.103.3.411.Aslam, O.P.M., Badruddin, 2017. Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in solar cycle 24. Sol. Phys. 292, 135. https://doi.org/10.1007/s11207-017- 1160-x.Axford, W.I., 1965. The modulation of galactic cosmic rays in the interplanetary medium. Planet. Space Sci. 13, 115–130. https://doi.org/ 10.1016/0032-0633(65)90181-9, URL: https://www.sciencedirect.com/science/article/pii/0032063365901819.Bazilevskaya, G.A., Cliver, E.W., Kovaltsov, G.A., Ling, A.G., Shea, M. A., Smart, D.F., Usoskin, I.G., 2014. Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. 186, 409–435. https://doi.org/10.1007/ s11214-014-0084-0.Bentler, P.M., Bonett, D.G., 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88, 588–606. https://doi.org/10.1037/0033-2909.88.3.588Bhargawa, A., Singh, A., 2021. Elucidation of some solar parameters observed during solar cycles 21–24. Adv. Space Res. 68, 2643–2660.Byrne, B.M., Shavelson, R.J., Muthe´n, B., 1989. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 105, 456–466. https:// doi.org/10.1037/0033-2909.105.3.456Chowdhury, P., Dwivedi, B.N., Ray, P.C., 2011. Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430– 438. https://doi.org/10.1016/j.newast.2011.03.003, URL: https:// www.sciencedirect.com/science/article/pii/S1384107611000248Cliver, E.W., Boriakoff, V., Bounar, K.H., 1996. The 22-year cycle of geomagnetic and solar wind activity. J. Geophys. Res.: Space Phys. 101, 27091–27109. https://doi.org/10.1029/96JA02037, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1029/96JA02037.Cliver, E.W., Richardson, I.G., Ling, A.G., Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. URL: https:// ntrs.nasa.gov/citations/20110023416, https://doi.org/10.1007/s11214- 011-9746-3. NTRS Author Affiliations: Air Force Research Lab., Maryland Univ., Atmospheric and Environmental Research, Inc. NTRS Report/Patent Number: GSFC.JA.5411.2011 NTRS Document ID: 20110023416 NTRS Research Center: Goddard Space Flight Center (GSFC).Davis, L., 1955. Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440–1444. https://doi.org/10.1103/PhysRev.100.1440.Davis, T.N., Sugiura, M., 1966. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. (1896–1977) 71, 785– 801. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/ JZ071i003p00785, https://doi.org/10.1029/JZ071i003p00785.Desai, M., Giacalone, J., 2016. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3. https://doi.org/10.1007/s41116- 016-0002-5.Dorman, L.I., 1991. Cosmic ray modulation. Nucl. Phys. B Proc. Suppl. 22, 21–45. https://doi.org/10.1016/0920-5632(91)90005-Y, URL: https://www.sciencedirect.com/science/article/pii/092056329190005YEngelbrecht, N.E., Effenberger, F., Florinski, V., Potgieter, M.S., Ruffolo, D., Chhiber, R., Usmanov, A.V., Rankin, J.S., Els, P.L., 2022. Theory of cosmic ray transport in the heliosphere. Space Sci. Rev. 218, 33. https://doi.org/10.1007/s11214-022-00896-1Eroshenko, E., Belov, A., Mavromichalaki, H., Mariatos, G., Oleneva, V., Plainaki, C., Yanke, V., 2004. Cosmic-ray variations during the two greatest bursts of solar activity in the 23rd solar cycle. Sol. Phys. 224, 345–358. https://doi.org/10.1007/s11207-005-5719-6.Fiandrini, E., Tomassetti, N., Bertucci, B., Donnini, F., Graziani, M., Khiali, B., Reina Conde, A., 2021. Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA. Phys. Rev. D 104, 023012. https://doi.org/10.1103/ PhysRevD.104.023012.Gaisser, T.K., Stanev, T., 2006. High-energy cosmic rays. Nucl. Phys. A 777, 98–110. https://doi.org/10.1016/j.nuclphysa.2005.01.024, URL: https://www.sciencedirect.com/science/article/pii/S0375947405000540.Giacalone, J., Drake, J.F., Jokipii, J.R., 2012. The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. 173, 283–307. https:// doi.org/10.1007/s11214-012-9915-z.Gopalswamy, N., Yashiro, S., Akiyama, S., 2016. Unusual polar conditions in solar cycle 24 and their implications for cycle 25. Astrophys. J. Lett. 823, L15. https://doi.org/10.3847/2041-8205/823/1/ L15.Inceoglu, F., Knudsen, M.F., Karoff, C., Olsen, J., 2014. Modeling the relationship between neutron counting rates and sunspot numbers using the hysteresis effect. Sol. Phys. 289, 1387–1402. https://doi.org/ 10.1007/s11207-013-0391-8.Iskra, K., Siluszyk, M., Alania, M., Wozniak, W., 2019. Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014. Sol. Phys. 294, 115. https://doi.org/10.1007/s11207-019-1509-4.Janardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D., 2018. Solar cycle 24: An unusual polar field reversal. Astron. Astrophys. 618, A148. https://doi.org/10.1051/0004-6361/201832981, URL: https:// www.aanda.org/articles/aa/abs/2018/10/aa32981-18/aa32981-18.html.Jian, L.K., Russell, C.T., Luhmann, J.G., 2011. Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Sol. Phys. 274, 321–344. https://doi.org/10.1007/s11207-011-9737-2.Joo¨reskog, K.G., Soo¨rbom, D., 1984. LISREL VI, analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods, 4th ed ed. Scientific Software Inc, Mooresville, Ind, OCLC: 38667546.Jo¨reskog, K.G., So¨rbom, D., 1982. Recent Developments in Structural Equation Modeling. J. Mark. Res. 19, 404–416. https://doi.org/ 10.1177/002224378201900402.Kilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y., 2014. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmosph. Sol.-Terrestrial Phys. 107, 12–19. https://doi.org/10.1016/j.jastp.2013.11.001, URL: https://www.sciencedirect.com/science/article/pii/S1364682613002903.Klecker, B., Mewaldt, R.A., Cummings, A.C., 1998. Anomalous Cosmic Rays. In: Fisk, L.A., Jokipii, J.R., Simnett, G.M., von Steiger, R., Wenzel, K.P. (Eds.), Space Science Reviews, vol. 3. Springer, Dordrecht, Netherlands, pp. 259–308, URL: https://resolver.caltech. edu/CaltechAUTHORS:20150107-155451895.Koldobskiy, S.A., Ka¨hko¨nen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G., 2022. Time lag between cosmic-ray and solar variability: sunspot numbers and open solar magnetic flux. Sol. Phys. 297, 38. https://doi.org/10.1007/s11207-022-01970-1.Komitov, B., Duchlev, P., 2014. Synthetic solar x-ray flares time series since 1968 ad 40, D2.2-35-14. URL: https://ui.adsabs.harvard.edu/ abs/2014cosp...40E1562K. aDS Bibcode: 2014cosp...40E1562K.Komitov, B., Duchlev, P., Koleva, K., Dechev, M., 2010. Synthetic solar X-ray flares time series since AD 1968/s2. URL: http://arxiv.org/abs/ 1007.2735, https://doi.org/10.48550/arXiv.1007.2735. arXiv:1007.2735 [astro-ph].Mavromichalaki, H., Paouris, E., Karalidi, T., 2007. Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters. Sol. Phys. 245, 369–390. https://doi.org/10.1007/s11207-007-9043-1.Mavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flu¨ckiger, E.O., Bu¨tikofer, R., Parisi, M., Storini, M., Klein, K.L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’nik, L., 2011. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res. 47, 2210–2222. https://doi.org/10.1016/j.asr.2010.02.019, URL: https:// www.sciencedirect.com/science/article/pii/S0273117710001249.Mavromichalaki, H., Papaioannou, A., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Plainaki, C., Papailiou, M., Mariatos, G., Nmdb Team, 2010. Establishing and Using the Real-Time Neutron Monitor Database (NMDB), p. 75. URL: https://ui.adsabs.harvard.edu/abs/ 2010ASPC.424...75M. aDS Bibcode: 2010ASPC.424...75MMcCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F., 2004. A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J. Geophys. Res.: Space Phys. 109. https://doi. org/10.1029/2004JA010685, URL: https://onlinelibrary.wiley.- com/doi/abs/10.1029/2004JA010685Mueller, 1999 R.O. Mueller Basic Principles of Structural Equation Modeling: An Introduction to LISREL and EQS Springer Science & Business Media (1999) Google-Books-ID: sXy2r5gQlB0CMueller and Hancock, 2018 R.O. Mueller, G.R. Hancock Structural Equation Modeling The Reviewer’s Guide to Quantitative Methods in the Social Sciences (2 ed.), Routledge (2018)Nagashima, K., Morishita, I., Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the sun. Planet. Space Sci. 28, 195–205. https://doi.org/10.1016/0032-0633(80) 90095-1. URL: https://www.sciencedirect.com/science/article/pii/ 0032063380900951.Nakagawa, Y., Nozawa, S., Shinbori, A., 2019. Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth, Planets Space 71, 24. https://doi.org/10.1186/s40623-019-1005-y.Paouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., Yanke, V., 2012. Galactic cosmic ray modulation and the last solar minimum. Sol. Phys. 280, 255–271. https://doi.org/10.1007/s11207-012-0051-4Popielawska, B., 1992. Components of the 11- and 22-year variation of cosmic rays. Planet. Space Sci. 40, 811–827. https://doi.org/10.1016/ 0032-0633(92)90109-2, URL: https://www.sciencedirect.com/science/ article/pii/0032063392901092.Potgieter, M.S., 1995. The long-term modulation of galactic cosmic rays in the heliosphere. Adv. Space Res. 16, 191–203. https://doi.org/10.1016/ 0273-1177(95)00334-B, URL: https://www.sciencedirect.com/science/ article/pii/027311779500334B.Potgieter, M.S., Le Roux, J.A., 1992. The Simulated Features of Heliospheric Cosmic-Ray Modulation with a Time-dependent Drift Model. I. General Effects of the Changing Neutral Sheet over the Period 1985–1990. Astrophys. J. 386, 336. https://doi.org/10.1086/ 171020, aDS Bibcode: 1992ApJ...386.336P. URL: https://ui.adsabs. harvard.edu/abs/1992ApJ...386.336PReames, D.V., 2013. The Two Sources of Solar Energetic Particles. Space Sci. Rev. 175, 53–92. https://doi.org/10.1007/s11214-013-9958-9.Richardson, I.G., Cane, H.V., 2012a. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963– 2011). J. Space Weather Space Climate 2, A02. https://doi.org/ 10.1051/swsc/2012003, URL: https://www.swsc-journal.org/articles/ swsc/abs/2012/01/swsc120017/swsc120017.html.Richardson, I.G., Cane, H.V., 2012b. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Climate 2, A01. https://doi.org/10.1051/swsc/2012001, URL: https:// www.swsc-journal.org/articles/swsc/abs/2012/01/swsc120012/ swsc120012.htmlRichardson, I.G., Cane, H.V., Cliver, E.W., 2002. Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res.: Space Phys. 107, SSH 8–1–SSH 8–13. https://doi.org/10.1029/ 2001JA000504. URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2001JA000504.Richardson, I.G., Cliver, E.W., Cane, H.V., 2000. Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res.: Space Phys. 105, 18203–18213. https://doi.org/10.1029/1999JA000400. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000400.Richardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972– 2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/Richardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/2001GL013052. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013052Ross, E., Chaplin, W.J., 2019. The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol. Phys. 294, 8. https://doi. org/10.1007/s11207-019-1397-7.Russell, C.T., Luhmann, J.G., Jian, L.K., 2010. How unprecedented a solar minimum?. Rev. Geophys. 48. https://doi.org/10.1029/ 2009RG000316 URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2009RG000316.Shaul, D.N.A., Aplin, K.L., Arau´jo, H., Bingham, R., Blake, J.B., Branduardi-Raymont, G., Buchman, S., Fazakerley, A., Finn, L.S., Fletcher, L., Glover, A., Grimani, C., Hapgood, M., Kellet, B., Matthews, S., Mulligan, T., Ni, W., Nieminen, P., Posner, A., Quenby, J.J., Roming, P., Spence, H., Sumner, T., Vocca, H., Wass, P., Young, P., 2006. Solar And Cosmic Ray Physics And The Space Environment: Studies For And With LISA, pp. 172–178. https://doi.org/10.1063/1. 2405038. URL: https://aip.scitation.org/doi/abs/10.1063/1.2405038.Sheskin, D.J., 2003. Handbook of Parametric and Nonparametric Statistical Procedures, third ed. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420036268.Shrivastava, P.K., 1997. Charecteristics of long-term cosmic ray modulation during different phases of sun spot cycles in relation with polarity of solar magnetic field., p. 65. URL: https://ui.adsabs. harvard.edu/abs/1997ICRC....2...65S. aDS Bibcode: 1997ICRC....2...65S.Sierra-Porta, D., 2018. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23. Astrophys. Space Sci. 363, 137. https://doi.org/10.1007/s10509-018- 3360-8.Singh, M., Badruddin, B., Asiri, H., 2021. Hysteresis, time lag, and relation between solar activity and cosmic rays during solar cycle 24. New Astron. 89, 101652. https://doi.org/10.1016/j.newast.2021.101652, URL: https://www.sciencedirect.com/science/article/ pii/S1384107621000841.Somaı¨la, K., Yacouba, S., Louis, Z.J., 2022. Solar wind and geomagnetic activity during two antagonist solar cycles: Comparative study between the solar cycles 23 and 24. Int. J. Phys. Sci. 17, 57–66. https://doi.org/10.5897/IJPS2022.4998, URL: https://academicjournals.org/journal/IJPS/article-abstract/4A39F8869748Stauning, P., 2015. A critical note on the IAGA-endorsed Polar Cap index procedure: effects of solar wind sector structure and reverse polar convection, pp. 1443–1455. https://doi.org/10.5194/angeo-33-1443- 2015. URL: https://angeo.copernicus.org/articles/33/1443/2015/.Takalo, J., 2021. Comparison of Geomagnetic Indices During Even and Odd Solar Cycles SC17 – SC24: Signatures of Gnevyshev Gap in Geomagnetic Activity. Sol. Phys. 296, 19. https://doi.org/10.1007/ s11207-021-01765-wTroshichev, O.A., 2022. PC index as a ground-based indicator of the solar wind energy incoming into the magnetosphere: (1) relation of PC index to the solar wind electric field EKL. Front. Astron. Space Sci. 9, 1069470. https://doi.org/10.3389/fspas.2022.1069470, aDS Bibcode: 2022FrASS...969470T. URL: https://ui.adsabs.harvard.edu/abs/ 2022FrASS...969470TTsurutani, B.T., Echer, E., Guarnieri, F.L., Gonzalez, W.D., 2011. The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J. Atmos. Solar Terr. Phys. 73, 164–177. https://doi.org/10.1016/j.- jastp.2010.04.003, URL: https://www.sciencedirect.com/science/article/pii/S1364682610001197Wibberenz, G., Richardson, I.G., Cane, H.V., 2002. A simple concept for modeling cosmic ray modulation in the inner heliosphere during solar cycles 20–23. J. Geophys. Res.: Space Phys. 107, SSH 5-1–SSH 5-15. https://doi.org/10.1029/2002JA009461, URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009461.Zerbo, J.L., Richardson, J.D., 2015. The solar wind during current and past solar minima and maxima. J. Geophys. Res.: Space Phys. 120, 10250–10256. https://doi.org/10.1002/2015JA021407, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021407.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S0273117723001746-main.pdf1-s2.0-S0273117723001746-main.pdfapplication/pdf797366https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/1/1-s2.0-S0273117723001746-main.pdff8b3e396b1880502914eeb39256dfac7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S0273117723001746-main.pdf.txt1-s2.0-S0273117723001746-main.pdf.txtExtracted texttext/plain58263https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/4/1-s2.0-S0273117723001746-main.pdf.txtd74b1f235eb57aab6bb3689a368bc112MD54THUMBNAIL1-s2.0-S0273117723001746-main.pdf.jpg1-s2.0-S0273117723001746-main.pdf.jpgGenerated Thumbnailimage/jpeg8846https://repositorio.utb.edu.co/bitstream/20.500.12585/12084/5/1-s2.0-S0273117723001746-main.pdf.jpg50779ded598ce0f37bfbb7042faee490MD5520.500.12585/12084oai:repositorio.utb.edu.co:20.500.12585/120842023-06-03 00:17:19.932Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=