Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller

This paper presents a photovoltaic (PV) system designed to reduce the DC-link capacitance present in double-stage PV microinverters without increasing the capacitor interfacing the PV source. This solution is based on a modified boost topology, which exhibits continuous current in both input and out...

Full description

Autores:
Ramos-Paja, Carlos Andres
Danilo-Montoya, Oscar
Grisales-Noreña, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12372
Acceso en línea:
https://hdl.handle.net/20.500.12585/12372
Palabra clave:
Boost converter
Non-electrolytic capacitor
PV microinverter
Sliding-mode controller
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_98c39faeb960637bca81a8aba0490e16
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12372
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
title Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
spellingShingle Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
Boost converter
Non-electrolytic capacitor
PV microinverter
Sliding-mode controller
title_short Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
title_full Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
title_fullStr Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
title_full_unstemmed Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
title_sort Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller
dc.creator.fl_str_mv Ramos-Paja, Carlos Andres
Danilo-Montoya, Oscar
Grisales-Noreña, Luis Fernando
dc.contributor.author.none.fl_str_mv Ramos-Paja, Carlos Andres
Danilo-Montoya, Oscar
Grisales-Noreña, Luis Fernando
dc.subject.keywords.spa.fl_str_mv Boost converter
Non-electrolytic capacitor
PV microinverter
Sliding-mode controller
topic Boost converter
Non-electrolytic capacitor
PV microinverter
Sliding-mode controller
description This paper presents a photovoltaic (PV) system designed to reduce the DC-link capacitance present in double-stage PV microinverters without increasing the capacitor interfacing the PV source. This solution is based on a modified boost topology, which exhibits continuous current in both input and output ports. Such a characteristic enables the implementation of PV microinverters without electrolytic capacitors, which improves the reliability in comparison with solutions based on classical converters with discontinuous output current and electrolytic capacitors. However, the modified boost converter exhibits different dynamic behavior in comparison with the classical boost converter; thus, design processes and controllers developed for the classical boost converter are not applicable. This paper also introduces a sliding-mode controller designed to ensure the stable operation of the PV microinverter around the maximum power point. Moreover, this solution also rejects the voltage oscillations at double the grid frequency generated by the grid-connection. The global stability of the complete PV system is formally demonstrated using mathematical analyses, and a step-by-step design process for both the power stage and control system is proposed. Finally, the design process is illustrated using a representative application example, and the correct operation of the PV system is validated using realistic circuital simulations. The results validate the accuracy of the theoretical equations proposed for both the design and control of the novel PV system, where errors below 4.5% were obtained for the ripple prediction, and below 1% for the prediction of the dynamic behavior.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09-15
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:47:03Z
dc.date.available.none.fl_str_mv 2023-07-21T20:47:03Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Ramos-Paja, C.A.; Danilo-Montoya, O.; Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller. Electronics 2022, 11, 2923. https://doi.org/10.3390/electronics11182923
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12372
dc.identifier.doi.none.fl_str_mv 10.3390/electronics11182923
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Ramos-Paja, C.A.; Danilo-Montoya, O.; Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller. Electronics 2022, 11, 2923. https://doi.org/10.3390/electronics11182923
10.3390/electronics11182923
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12372
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 32 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Electronics (Switzerland) - Vol. 11 No. 18 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/1/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/4/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/5/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.jpg
bitstream.checksum.fl_str_mv 176fabf959a8e0730fb371bcbe157de7
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
07565ac36fc111e4f1026f5eda2bcbed
2fe302475fdfbf8e9b9a2d09f45f3b17
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021762878275584
spelling Ramos-Paja, Carlos Andres6c8f6752-cad7-4a04-9a85-1d5483213510Danilo-Montoya, Oscar96c898c1-3272-4ab3-864c-43e5bff72ec4Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d12023-07-21T20:47:03Z2023-07-21T20:47:03Z2022-09-152023-07Ramos-Paja, C.A.; Danilo-Montoya, O.; Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller. Electronics 2022, 11, 2923. https://doi.org/10.3390/electronics11182923https://hdl.handle.net/20.500.12585/1237210.3390/electronics11182923Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper presents a photovoltaic (PV) system designed to reduce the DC-link capacitance present in double-stage PV microinverters without increasing the capacitor interfacing the PV source. This solution is based on a modified boost topology, which exhibits continuous current in both input and output ports. Such a characteristic enables the implementation of PV microinverters without electrolytic capacitors, which improves the reliability in comparison with solutions based on classical converters with discontinuous output current and electrolytic capacitors. However, the modified boost converter exhibits different dynamic behavior in comparison with the classical boost converter; thus, design processes and controllers developed for the classical boost converter are not applicable. This paper also introduces a sliding-mode controller designed to ensure the stable operation of the PV microinverter around the maximum power point. Moreover, this solution also rejects the voltage oscillations at double the grid frequency generated by the grid-connection. The global stability of the complete PV system is formally demonstrated using mathematical analyses, and a step-by-step design process for both the power stage and control system is proposed. Finally, the design process is illustrated using a representative application example, and the correct operation of the PV system is validated using realistic circuital simulations. The results validate the accuracy of the theoretical equations proposed for both the design and control of the novel PV system, where errors below 4.5% were obtained for the ripple prediction, and below 1% for the prediction of the dynamic behavior.32 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics (Switzerland) - Vol. 11 No. 18 (2022)Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controllerinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Boost converterNon-electrolytic capacitorPV microinverterSliding-mode controllerCartagena de IndiasKrechowicz, M., Krechowicz, A., Lichołai, L., Pawelec, A., Piotrowski, J.Z., Stępień, A. Reduction of the Risk of Inaccurate Prediction of Electricity Generation from PV Farms Using Machine Learning (2022) Energies, 15 (11), art. no. 4006. Cited 5 times. https://www.mdpi.com/1996-1073/15/11/4006/pdf?version=1654160719 doi: 10.3390/en15114006Shams, I., Mekhilef, S., Tey, K.S. Advancement of voltage equalizer topologies for serially connected solar modules as partial shading mitigation technique: A comprehensive review (2021) Journal of Cleaner Production, 285, art. no. 124824. Cited 15 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.124824Ben-Yaakov, S., Blumenfeld, A., Cervera, A., Evzelman, M. Design and evaluation of a modular resonant switched capacitors equalizer for PV panels (2012) 2012 IEEE Energy Conversion Congress and Exposition, ECCE 2012, art. no. 6342262, pp. 4129-4136. Cited 56 times. ISBN: 978-146730801-4 doi: 10.1109/ECCE.2012.6342262Eguchi, K., Oota, I., Terada, S., Zhu, H. Synthesis and analysis of a switched-capacitor-based battery equalizer using: Level-shift circuits (2012) International Journal of Intelligent Engineering and Systems, 5 (4), pp. 1-9. Cited 5 times. http://www.inass.org/share/2012123101.pdf doi: 10.22266/ijies2012.1231.01Ballo, A., Grasso, A.D., Palumbo, G. Current-mode body-biased switch to increase performance of linear charge pumps (2020) International Journal of Circuit Theory and Applications, 48 (11), pp. 1864-1872. Cited 14 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-007X doi: 10.1002/cta.2851Ballo, A., Grasso, A.D., Palumbo, G. A review of charge pump topologies for the power management of IoT nodes (2019) Electronics (Switzerland), 8 (5), art. no. 480. Cited 70 times. https://www.mdpi.com/2079-9292/8/5/480/pdf doi: 10.3390/electronics8050480Ballo, A., Grasso, A.D., Giustolisi, G., Palumbo, G. Optimized Charge Pump with Clock Booster for Reduced Rise Time or Silicon Area (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (12), art. no. 8640088, pp. 1977-1981. Cited 27 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2898716Fang, Y., Zhu, Y., Fei, J. Adaptive intelligent sliding mode control of a photovoltaic grid-connected inverter (2018) Applied Sciences (Switzerland), 8 (10), art. no. 1756. Cited 12 times. https://www.mdpi.com/2076-3417/8/10/1756/pdf doi: 10.3390/app8101756Ramos-Paja, C.A., Bastidas-Rodriguez, J.D., Saavedra-Montes, A.J. Sliding-Mode Control of a Photovoltaic System Based on a Flyback Converter for Microinverter Applications (2022) Applied Sciences (Switzerland), 12 (3), art. no. 1399. Cited 4 times. https://www.mdpi.com/2076-3417/12/3/1399/pdf doi: 10.3390/app12031399Al-Wesabi, I., Fang, Z., Wei, Z., Dong, H. Direct sliding mode control for dynamic instabilities in dc-link voltage of standalone photovoltaic systems with a small capacitor (2022) Electronics (Switzerland), 11 (1), art. no. 133. Cited 10 times. https://www.mdpi.com/2079-9292/11/1/133/pdf doi: 10.3390/electronics11010133Kihal, A., Krim, F., Talbi, B., Laib, A., Sahli, A. A robust control of two-stage grid-tied PV systems employing integral sliding mode theory (Open Access) (2018) Energies, 11 (10), art. no. 2791. Cited 24 times. https://www.mdpi.com/1996-1073/11/10/2791/pdf doi: 10.3390/en11102791Zeb, K., Islam, S.U., Din, W.U., Khan, I., Ishfaq, M., Busarello, T.D.C., Ahmad, I., (...), Kim, H.J. Design of fuzzy-PI and fuzzy-sliding mode controllers for single-phase two-stages grid- connected transformerless photovoltaic inverter (Open Access) (2019) Electronics (Switzerland), 8 (5), art. no. 520. Cited 48 times. https://www.mdpi.com/2079-9292/8/5/520/pdf doi: 10.3390/electronics8050520Kabalci, E., Kabalci, Y., Guerrero, J.M. Design and implementation of a dual-input single-output photovoltaic converter (2020) Energies, 13 (14), art. no. 3679. https://www.mdpi.com/1996-1073/13/14/3679 doi: 10.3390/en13143679Ahmed, M., Harbi, I., Kennel, R., Abdelrahem, M. Predictive fixed switching maximum power point tracking algorithm with dual adaptive step-size for pv systems (2021) Electronics (Switzerland), 10 (24), art. no. 3109. Cited 6 times. https://www.mdpi.com/2079-9292/10/24/3109/pdf doi: 10.3390/electronics10243109Charaabi, A., Barambones, O., Zaidi, A., Zanzouri, N. A novel two stage controller for a dc-dc boost converter to harvest maximum energy from the PV power generation (2020) Actuators, 9 (2), art. no. 29. Cited 5 times. https://www.mdpi.com/2076-0825/9/2/29 doi: 10.3390/ACT9020029Bani Salim, M., Hayajneh, H.S., Mohammed, A., Ozcelik, S. Robust direct adaptive controller design for photovoltaic maximum power point tracking application (Open Access) (2019) Energies, 12 (16), art. no. en12163182. Cited 8 times. https://www.mdpi.com/1996-1073/12/16 doi: 10.3390/en12163182Gil, G.M.V., Rodrigues, L.L., Inomoto, R.S., Sguarezi, A.J., Monaro, R.M. Weighted-PSO applied to tune sliding mode plus PI controller applied to a boost converter in a PV system (2019) Energies, 12 (5), art. no. 864. Cited 9 times. https://www.mdpi.com/1996-1073/12/5 doi: 10.3390/en12050864Ramos-Paja, C.A., Montoya, D.G., Bastidas-Rodriguez, J.D. Sliding-mode control of distributed maximum power point tracking converters featuring overvoltage protection (2018) Energies, 11 (9), art. no. en11092220. Cited 9 times. https://www.mdpi.com/1996-1073/11/9/2220/pdf doi: 10.3390/en11092220Zhang, G., Chen, W., Yu, S.S., Zhang, Y. Non-electrolytic-capacitor boost converter with non-pulsating ripple-free output current (2021) International Journal of Circuit Theory and Applications, 49 (9), pp. 2719-2735. Cited 2 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-007X doi: 10.1002/cta.3033(2021) Available online https://powersimtech.com/products/psim/capabilities-applications/El Aroudi, A., Haroun, R., Al-Numay, M., Huang, M. Multiple-loop control design for a single-stage PV-fed grid-tied differential boost inverter (Open Access) (2020) Applied Sciences (Switzerland), 10 (14), art. no. 4808. Cited 9 times. https://res.mdpi.com/d_attachment/applsci/applsci-10-04808/article_deploy/applsci-10-04808-v2.pdf doi: 10.3390/app10144808Erickson, R.W., Maksimovic, D. (2001) Fundamentals of Power Electronics. Cited 8026 times. 2nd ed., Springer, Berlin/Heidelberg, GermanyBabaei, E., Seyed Mahmoodieh, M.E. Systematical method of designing the elements of the Cuk converter (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 55, pp. 351-361. Cited 23 times. doi: 10.1016/j.ijepes.2013.09.024Coelho, R.F., Dos Santos, W.M., Martins, D.C. Influence of power converters on PV maximum power point tracking efficiency (Open Access) (2012) 2012 10th IEEE/IAS International Conference on Industry Applications, INDUSCON 2012, art. no. 6453083. Cited 45 times. ISBN: 978-146732412-0 doi: 10.1109/INDUSCON.2012.6453083Montoya, D.G., Ramos-Paja, C.A., Giral, R. Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques (2016) IEEE Transactions on Power Electronics, 31 (1), art. no. 7024938, pp. 235-247. Cited 116 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2015.2397831Art Kay, T.C. TI Designs: Comparator with Hysteresis Reference Design, 2014Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M. Optimization of perturb and observe maximum power point tracking method (Open Access) (2005) IEEE Transactions on Power Electronics, 20 (4), pp. 963-973. Cited 2480 times. doi: 10.1109/TPEL.2005.850975Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M. A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems (Open Access) (2009) IEEE Transactions on Industrial Electronics, 56 (11), pp. 4473-4482. Cited 395 times. doi: 10.1109/TIE.2009.2029589(2021) TMS320F28335. Cited 2 times. Available online https://www.ti.com/product/TMS320F28335(2022) AD533 Low Cost IC Multiplier, Divider, Squarer, Square Rooter. Cited 2 times. Available online https://www.analog.com/en/products/ad533.html#product-overviewRC4200 Analog Multiplier, 2001 Available online https://www.javanelec.com/CustomAjax/GetAppDocument/80c6759d-554f-4720-8a24-7440b9d4f9af(2002) HA-2557 130 MHz, Four Quadrant, Current Output Analog Multiplier. Cited 2 times. Available online https://manualmachine.com/intersil/ha2557883/3885982-datasheet/Datasheet BP 585, 2003 Available online http://www.posharp.com/Businesses/daacacf6-2fa0-4fe2-b6f5-30211a36989a/Panel/BP585F.pdfFemia, N., Petrone, G., Spagnuolo, G., Vitelli, M. Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems (Open Access) (2012) Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems, pp. 1-336. Cited 175 times. https://www.taylorfrancis.com/books/9781466506916 ISBN: 978-146650691-6; 978-131521653-9 doi: 10.1201/b14303Petrone, G., Ramos-Paja, C.A., Spagnuolo, G. (2017) Photovoltaic Sources Modeling. Cited 104 times. John Wiley & Sons, Ltd., Chichester, UK(2019) Slew Rate Limiter Circuit (SBOA218A) Available online https://www.ti.com/lit/an/sboa218a/sboa218a.pdfAngadi, S., Yaragatti, U.R., Suresh, Y., Raju, A.B. System parameter based performance optimization of solar PV systems with perturbation based MPPT algorithms (2021) Energies, 14 (7), art. no. 2007. Cited 8 times. https://www.mdpi.com/1996-1073/14/7/2007/pdf doi: 10.3390/en14072007http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdfPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdfapplication/pdf1650515https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/1/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf176fabf959a8e0730fb371bcbe157de7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.txtPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.txtExtracted texttext/plain95533https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/4/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.txt07565ac36fc111e4f1026f5eda2bcbedMD54THUMBNAILPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.jpgPhotovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.jpgGenerated Thumbnailimage/jpeg8132https://repositorio.utb.edu.co/bitstream/20.500.12585/12372/5/Photovoltaic-System-for-Microinverter-Applications-Based-on-a-NonElectrolyticCapacitor-Boost-Converter-and-a-SlidingMode-ControllerElectronics-Switzerland.pdf.jpg2fe302475fdfbf8e9b9a2d09f45f3b17MD5520.500.12585/12372oai:repositorio.utb.edu.co:20.500.12585/123722023-07-22 00:18:20.276Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=