Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field

Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and cha...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8749
Acceso en línea:
https://hdl.handle.net/20.500.12585/8749
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_975acb1579cbd87711ee29208c2d6436
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8749
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
spellingShingle Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title_short Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title_full Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title_fullStr Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title_full_unstemmed Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
title_sort Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field
description Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011). In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein's gravity alone. © 2016 Abraão J. S. Capistrano and Antonio C. Gutiérrez-Piñeres.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:17Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:17Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Advances in Astronomy; Vol. 2016
dc.identifier.issn.none.fl_str_mv 1687-7969
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8749
dc.identifier.doi.none.fl_str_mv 10.1155/2016/9193627
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Advances in Astronomy; Vol. 2016
1687-7969
10.1155/2016/9193627
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8749
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Hindawi Limited
publisher.none.fl_str_mv Hindawi Limited
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85003927936&doi=10.1155%2f2016%2f9193627&partnerID=40&md5=9e232629a8c8708cc72cd8d54c1aec42
Scopus 26530767700
Scopus 25225467000
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/1/DOI10_115520169193627.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/4/DOI10_115520169193627.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/5/DOI10_115520169193627.pdf.jpg
bitstream.checksum.fl_str_mv f02e4d187540c31edb55fc977abe767f
524176c440ba395e8f8f399240242f32
24e24856717f693b56d9fc2d2d953ffc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397611514724352
spelling 2019-11-06T19:05:17Z2019-11-06T19:05:17Z2016Advances in Astronomy; Vol. 20161687-7969https://hdl.handle.net/20.500.12585/874910.1155/2016/9193627Universidad Tecnológica de BolívarRepositorio UTBExact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011). In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein's gravity alone. © 2016 Abraão J. S. Capistrano and Antonio C. Gutiérrez-Piñeres.Recurso electrónicoapplication/pdfengHindawi Limitedhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85003927936&doi=10.1155%2f2016%2f9193627&partnerID=40&md5=9e232629a8c8708cc72cd8d54c1aec42Scopus 26530767700Scopus 25225467000Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Fieldinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Capistrano A.J.S.Gutiérrez-Piñeres A.C.Bocquet, M., Bonazzola, S., Gourgoullon, E., Novak, J., Rotating neutron star models with a magnetic field (1995) Astronomy & Astrophysics, 301Hackman, E., Xu, H., Charged particle motion in Kerr-Newmann space-times (2013) Physical Review D, 87 (12), 21pChakraborty, K., Rahaman, F., Ray, S., Nandi, A., Islam, N., Possible features of galactic halo with electric field and observational constraints (2014) General Relativity and Gravitation, 46 (10), pp. 1-24Nandi, A., Islam, N., Possible features of galactic halo with electric field and observational constraints (2014) General Relativity and Gravitation, 46Pugliese, D., Quevedo, H., Ruffini, R., Circular motion of neutral test particles in Reissner-Nordström spacetime (2011) Physical Review D, 83 (2)Pugliese, D., Quevedo, H., Rffini, R., Motion of charged test particles in Reissner-Nordström spacetime (2011) Physical Review D, 83 (10)Pugliese, D., Quevedo, H., Ruffini, R., Equatorial circular motion in Kerr spacetime (2011) Physical Review D, 84 (4)Han, J., The large-scale magnetic field structure of our Galaxy: Efficiently deduced from pulsar rotation measures (2003) Proceedings of the Magnetized Interstellar Medium Symposium, 24, pp. 3-12. , B. Uyanker, W. Reich, and R. Wielebinski, Eds. Antalya, TurkeyHan, J., Magnetic fields in our milky way galaxy and nearby galaxies, solar and astrophysical dynamos and magnetic activity (2012) Proceedings of the International Astronomical Union, IAU Symposium, Solar and Astrophysical Dynamos and Magnetic Activity, 294, pp. 213-224. , A. G. Kosovichev, E. M. de Gouveia Dal Pino, and Y. Yan, EdsKrause, M., Magnetic fields in spiral galaxies (2003) The Magnetized Interstellar Medium, , B. Uyanker, W. Reich, and R. Wielebinski, EdsBeek, R., Wielebinski, R., (2013) Planets, Stars and Stellar Systems, 614. , SpringerBeck, R., Magnetic fields in spiral galaxies (2016) The Astronomy and Astrophysics Review, 24 (1)Voigt, D., Letelier, P.S., Exact relativistic static charged perfect fluid disks (2004) Physical Review D, 70 (6)Gutíerrez-Piñeres, A.C., González, G.A., Quevedo, H., Conformastatic disk-haloes in Einstein-Maxwell gravity (2013) Physical Review D, 87 (4)Gutíerrez-Piñeres, A.C., Capistrano, A.J.S., Quevedo, H., Test particles in amagnetized conformastatic spacetime (2016) Physical Review D, 93 (12)Binney, J., Tremaine, S., (2011) Galactic Dynamic, , PrincetonUniversity Press, Princeton, NJ, USAGutíerrez-Piñeres, A.C., Capistrano, A.J.S., Exact relativistic magnetized haloes around rotating disks (2015) Advances in Mathematical Physics, 2015, 13pCapistrano, A.J.S., Roque, W.L., Valada, R.S., Weyl conformastatic perihelion advance (2014) Monthly Notices of the Royal Astronomical Society, 444 (2), pp. 1639-1646Pitjev, N.P., Pitjeva, E.V., Constraints on dark matter in the solar system (2013) Astronomy Letters, 39 (3), pp. 141-149Pitjeva, E.V., Pitjev, N.P., Relativistic effects and darkmatter in the solar system fromobservations of planets and spacecraft (2013) Monthly Notices of the Royal Astronomical Society, 432 (4), pp. 3431-3437Synge, J., (1960) Relativity: The General Theory, , North-Holland Pub. Co., Interscience Publishers, Amsterdam, The NetherlandsWilhelm, K., Dwivedi, B.N., Secular perihelion advances of the inner planets and asteroid Icarus (2014) New Astronomy, 31, pp. 51-55Nambuya, G.G., Azimuthally symmetric theory of gravitation-I. on the perihelion precession of planetary orbits (2010) Monthly Notices of the Royal Astronomical Society, 403 (3), pp. 1381-1391Fernandez, J.A., (2005) Comets: Nature, Dynamics, Origin, and Their Cosmogonical Relevance Vol 328 of Astrophysics and Space Science Library, , Springer, Berlin, GermanyHarko, T., Kovács, Z., Lobo, F.S.N., Soc, R., Solar System tests ofHorava-Lifshitz gravity (2011) Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 467 (2129), pp. 1390-1407Neslusan, L., On the global electrostatic charge of stars (2001) Astronomy & Astrophysics, 372 (3), pp. 913-915Will, C.M., The confrontation between general relativity and experiment (2006) Living Reviews in Relativity, 9http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_115520169193627.pdfapplication/pdf2237030https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/1/DOI10_115520169193627.pdff02e4d187540c31edb55fc977abe767fMD51TEXTDOI10_115520169193627.pdf.txtDOI10_115520169193627.pdf.txtExtracted texttext/plain35879https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/4/DOI10_115520169193627.pdf.txt524176c440ba395e8f8f399240242f32MD54THUMBNAILDOI10_115520169193627.pdf.jpgDOI10_115520169193627.pdf.jpgGenerated Thumbnailimage/jpeg99107https://repositorio.utb.edu.co/bitstream/20.500.12585/8749/5/DOI10_115520169193627.pdf.jpg24e24856717f693b56d9fc2d2d953ffcMD5520.500.12585/8749oai:repositorio.utb.edu.co:20.500.12585/87492023-05-26 11:43:52.341Repositorio Institucional UTBrepositorioutb@utb.edu.co