Effective Perihelion Advance and Potentials in a Conformastatic Background with Magnetic Field

Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and cha...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8749
Acceso en línea:
https://hdl.handle.net/20.500.12585/8749
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Exact solutions of the Einstein-Maxwell field equations for a conformastatic metric with magnetized sources are investigated. In this context, effective potentials are studied in order to understand the dynamics of the magnetic field in galaxies. We derive the equations of motion for neutral and charged particles in a spacetime background characterized by this class of solutions. In this particular case, we investigate the main physical properties of the equatorial circular orbits and related effective potentials. In addition, we obtain an effective analytic expression for the perihelion advance of test particles. Our theoretical predictions are compared with the observational data calibrated with the ephemerides of the planets of the solar system and the Moon (EPM2011). In general, we show that the magnetic punctual mass predicts values that are in better agreement with observations than the values predicted in Einstein's gravity alone. © 2016 Abraão J. S. Capistrano and Antonio C. Gutiérrez-Piñeres.