Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC

In this paper an indirect interconnection and damping assignment passivity-based control (IDA-PBC) applied to the three-phase superconducting magnetic energy storage systems (SMES) is proposed to support active and reactive power in distribution systems. The SMES is connected to the distribution net...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8880
Acceso en línea:
https://hdl.handle.net/20.500.12585/8880
Palabra clave:
Active and reactive power compensation
Distribution systems
Interconnection and damping assignment passivity-based control
Pulse-width-modulated current source converter
Superconducting magnetic energy storage
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Voltage distribution measurement
Active and Reactive Power
Distribution systems
Passivity based control
Pulse-width-modulated
Superconducting magnetic energy storages
Hamiltonians
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9718bceff952af1037666cdcbf282322
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8880
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
title Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
spellingShingle Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
Active and reactive power compensation
Distribution systems
Interconnection and damping assignment passivity-based control
Pulse-width-modulated current source converter
Superconducting magnetic energy storage
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Voltage distribution measurement
Active and Reactive Power
Distribution systems
Passivity based control
Pulse-width-modulated
Superconducting magnetic energy storages
Hamiltonians
title_short Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
title_full Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
title_fullStr Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
title_full_unstemmed Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
title_sort Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
dc.subject.keywords.none.fl_str_mv Active and reactive power compensation
Distribution systems
Interconnection and damping assignment passivity-based control
Pulse-width-modulated current source converter
Superconducting magnetic energy storage
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Voltage distribution measurement
Active and Reactive Power
Distribution systems
Passivity based control
Pulse-width-modulated
Superconducting magnetic energy storages
Hamiltonians
topic Active and reactive power compensation
Distribution systems
Interconnection and damping assignment passivity-based control
Pulse-width-modulated current source converter
Superconducting magnetic energy storage
Damping
Electric energy storage
Electric power distribution
Electric power system interconnection
Magnetic storage
Power converters
Pulse width modulation
Reactive power
Superconducting coils
Superconducting magnets
Voltage distribution measurement
Active and Reactive Power
Distribution systems
Passivity based control
Pulse-width-modulated
Superconducting magnetic energy storages
Hamiltonians
description In this paper an indirect interconnection and damping assignment passivity-based control (IDA-PBC) applied to the three-phase superconducting magnetic energy storage systems (SMES) is proposed to support active and reactive power in distribution systems. The SMES is connected to the distribution network using a pulse-width-modulated current source converter (PWM-CSC), due to its intrinsic current features that are more natural for controlling the current of a superconducting coil. A Hamiltonian function is selected as an hyperboloid representation taking into account the open loop dynamics of the system. The indirect control strategy is used to decouple the dynamical behavior between ac and dc side of the system, which allows to control active and reactive power independently in the ac side, while the dc side of the converter is employed as a supervisor controller for active power interchange. Simulation results demonstrate the efficiency and robustness of the proposed control methodology applied on a low-voltage distribution network under different operative conditions where the tracking errors were less than 6.2%. © 2018 Elsevier Ltd
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:33Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:33Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Energy Storage; Vol. 17, pp. 261-271
dc.identifier.issn.none.fl_str_mv 2352152X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8880
dc.identifier.doi.none.fl_str_mv 10.1016/j.est.2018.03.004
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
36449223500
55989699400
identifier_str_mv Journal of Energy Storage; Vol. 17, pp. 261-271
2352152X
10.1016/j.est.2018.03.004
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
36449223500
55989699400
url https://hdl.handle.net/20.500.12585/8880
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048704609&doi=10.1016%2fj.est.2018.03.004&partnerID=40&md5=4f360b1e69eb829c98314b4ba6505c36
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8880/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397615740485632
spelling 2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Journal of Energy Storage; Vol. 17, pp. 261-2712352152Xhttps://hdl.handle.net/20.500.12585/888010.1016/j.est.2018.03.004Universidad Tecnológica de BolívarRepositorio UTB56919564100571914936483644922350055989699400In this paper an indirect interconnection and damping assignment passivity-based control (IDA-PBC) applied to the three-phase superconducting magnetic energy storage systems (SMES) is proposed to support active and reactive power in distribution systems. The SMES is connected to the distribution network using a pulse-width-modulated current source converter (PWM-CSC), due to its intrinsic current features that are more natural for controlling the current of a superconducting coil. A Hamiltonian function is selected as an hyperboloid representation taking into account the open loop dynamics of the system. The indirect control strategy is used to decouple the dynamical behavior between ac and dc side of the system, which allows to control active and reactive power independently in the ac side, while the dc side of the converter is employed as a supervisor controller for active power interchange. Simulation results demonstrate the efficiency and robustness of the proposed control methodology applied on a low-voltage distribution network under different operative conditions where the tracking errors were less than 6.2%. © 2018 Elsevier LtdDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentThe authors want to thank the support of National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira. Appendix ARecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048704609&doi=10.1016%2fj.est.2018.03.004&partnerID=40&md5=4f360b1e69eb829c98314b4ba6505c36Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSCinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Active and reactive power compensationDistribution systemsInterconnection and damping assignment passivity-based controlPulse-width-modulated current source converterSuperconducting magnetic energy storageDampingElectric energy storageElectric power distributionElectric power system interconnectionMagnetic storagePower convertersPulse width modulationReactive powerSuperconducting coilsSuperconducting magnetsVoltage distribution measurementActive and Reactive PowerDistribution systemsPassivity based controlPulse-width-modulatedSuperconducting magnetic energy storagesHamiltoniansMontoya O.D.Gil-González W.Garcés, AlejandroEspinosa-Pérez, G.Luo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl. Energy, 137, pp. 511-536Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Shi, J., Tang, Y., Ren, L., Li, J., Chen, S., Application of SMES in wind farm to improve voltage stability (2008) Physica C, 468 (15-20), pp. 2100-2103Kim, A.-R., Kim, G.-H., Heo, S., Park, M., Yu, I.-K., Kim, H.-M., SMES application for frequency control during islanded microgrid operation (2013) Physica C, 484, pp. 282-286Farahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39Vazquez, S., Lukic, S.M., Galvan, E., Franquelo, L.G., Carrasco, J.M., Energy storage systems for transport and grid applications (2010) IEEE Trans. Ind. Electron., 57 (12), pp. 3881-3895Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Bilgin, H., Ermis, M., Current source converter based STATCOM: operating principles, design and field performance (2011) Electr. Power Syst. Res., 81 (2), pp. 478-487Yunus, A.M.S., Masoum, M.A.S., Abu-Siada, A., Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell (2012) IEEE Trans. Appl. Supercond., 22 (4), p. 5702009Wang, S., Tang, Y., Shi, J., Gong, K., Liu, Y., Ren, L., Li, J., Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations (2015) IET Renew. Power Gener., 9 (2), pp. 89-98Ali, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47Giraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453Jiang, X., Chu, X., Wu, X., Liu, W., Lai, Y., Wang, Z., Dai, Y., Lan, H., Smes system for study on utility and customer power applications (2001) IEEE Trans. Appl. Supercond., 11 (1), pp. 1765-1768Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171Hayashi, H., Hatabe, Y., Nagafuchi, T., Taguchi, A., Terazono, K., Ishii, T., Taniguchi, S., Test results of power system control by experimental SMES (2006) IEEE Trans. Appl. Supercond., 16 (2), pp. 598-601Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104Ngamroo, I., Simultaneous optimization of SMES coil size and control parameters for robust power system stabilization (2011) IEEE Trans. Appl. Supercond., 21 (3), pp. 1358-1361Wang, Z., Zou, Z., Zheng, Y., Design and control of a photovoltaic energy and SMES hybrid system with current-source grid inverter (2013) IEEE Trans. Appl. Supercond., 23 (3). , 5701505-5701505Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5Hemeida, A.M., A fuzzy logic controlled superconducting magnetic energy storage, {SMES} frequency stabilizer (2010) Electr. Power Syst. Res., 80 (6), pp. 651-656Ali, M.H., Wu, B., Tamura, J., Dougal, R.A., Minimization of shaft oscillations by fuzzy controlled {SMES} considering time delay (2010) Electr. Power Syst. Res., 80 (7), pp. 770-777Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782Mahmud, M.A., Hossain, M.J., Pota, H.R., Dynamical modeling and nonlinear control of superconducting magnetic energy systems: applications in power systems (2014) 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6Gil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95Ramírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Serra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238Donaire, A., Ortega, R., Romero, J., Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces (2016) Syst. Control Lett., 94, pp. 118-126Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir (2013) J. Hydrol., 476, pp. 433-441. , http://www.sciencedirect.com/science/article/pii/S002216941200981XViero, D.P., Valipour, M., Modeling anisotropy in free-surface overland and shallow inundation flows (2017) Adv. Water Resour., 104, pp. 1-14. , http://www.sciencedirect.com/science/article/pii/S0309170816307722Valipour, M., How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? (2016) Agriculture, 6 (4), p. 53Valipour, M., Sefidkouhi, M.A.G., Raeini-Sarjaz, M., Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events (2017) Agric. Water Manag., 180, pp. 50-60. , http://www.sciencedirect.com/science/article/pii/S0378377416303195Sivák, P., Hroncová, D., State-space model of a mechanical system in MATLAB/simulink (2012) Proc. Eng., 48, pp. 629-635. , http://www.sciencedirect.com/science/article/pii/S1877705812046267, Modelling of Mechanical and Mechatronics SystemsRashid, M.H., Power Electronics Handbook-Devices, Circuits, and Applications (2011), ElsevierIEEE standard for interconnecting distributed resources with electric power systems – Amendment 1 (2014) IEEE Std 1547-2014 (Amendment to IEEE Std 1547-2003), pp. 1-16Bierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842Perko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business Mediahttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8880/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8880oai:repositorio.utb.edu.co:20.500.12585/88802023-05-26 09:51:44.372Repositorio Institucional UTBrepositorioutb@utb.edu.co