DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators
This paper presents an exact feedback linearization control strategy for voltage source converters (VSCs) applied to the integration of distributed energy resources (DERs) in smart distribution systems and microgrids. System dynamics is represented by an average nonlinear model which is transformed...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8888
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8888
- Palabra clave:
- Distributed energy resource (DER)
Exact feedback linearization
Passivity-based control (PBC)
Stability analysis
Supercapacitor
Voltage source converter (VSC)
Control system analysis
Distributed power generation
MATLAB
Nonlinear systems
Photovoltaic cells
Spatial variables control
Supercapacitor
Distributed energy resource
Exact feedback linearization
Passivity based control
Stability analysis
Voltage source converter (VSC)
Feedback linearization
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_96fe45b0c846fd6095bfd6cdab3eddb5 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8888 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
title |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
spellingShingle |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators Distributed energy resource (DER) Exact feedback linearization Passivity-based control (PBC) Stability analysis Supercapacitor Voltage source converter (VSC) Control system analysis Distributed power generation MATLAB Nonlinear systems Photovoltaic cells Spatial variables control Supercapacitor Distributed energy resource Exact feedback linearization Passivity based control Stability analysis Voltage source converter (VSC) Feedback linearization |
title_short |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
title_full |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
title_fullStr |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
title_full_unstemmed |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
title_sort |
DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators |
dc.subject.keywords.none.fl_str_mv |
Distributed energy resource (DER) Exact feedback linearization Passivity-based control (PBC) Stability analysis Supercapacitor Voltage source converter (VSC) Control system analysis Distributed power generation MATLAB Nonlinear systems Photovoltaic cells Spatial variables control Supercapacitor Distributed energy resource Exact feedback linearization Passivity based control Stability analysis Voltage source converter (VSC) Feedback linearization |
topic |
Distributed energy resource (DER) Exact feedback linearization Passivity-based control (PBC) Stability analysis Supercapacitor Voltage source converter (VSC) Control system analysis Distributed power generation MATLAB Nonlinear systems Photovoltaic cells Spatial variables control Supercapacitor Distributed energy resource Exact feedback linearization Passivity based control Stability analysis Voltage source converter (VSC) Feedback linearization |
description |
This paper presents an exact feedback linearization control strategy for voltage source converters (VSCs) applied to the integration of distributed energy resources (DERs) in smart distribution systems and microgrids. System dynamics is represented by an average nonlinear model which is transformed algebraically into an equivalent linear model by simple substitutions, avoiding to use Taylor's series or another equivalent linearization technique. The equivalent linear model preserves all characteristics of the nonlinear model, which implies that the control laws obtained are completely applicable on its nonlinear representation. Stability analysis is made using the passivity-based technique. The exact feedback linearization control in combination with passivity-based control (PBC) theory guarantees to obtain a global asymptotically stable controller in the sense of Lyapunov for its closed-loop representation. The effectiveness and robustness of the proposed methodology is tested in a low-voltage microgrid with a photovoltaic system, a supercapacitor energy storage (SCES) device and unbalance loads. All simulation scenarios are conducted in MATLAB/SIMULINK environment via SimPowerSystem library. © 2018 Elsevier Ltd |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Energy Storage; Vol. 16, pp. 250-258 |
dc.identifier.issn.none.fl_str_mv |
2352152X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8888 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.est.2018.01.014 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 36449223500 37104976300 |
identifier_str_mv |
Journal of Energy Storage; Vol. 16, pp. 250-258 2352152X 10.1016/j.est.2018.01.014 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 36449223500 37104976300 |
url |
https://hdl.handle.net/20.500.12585/8888 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211743&doi=10.1016%2fj.est.2018.01.014&partnerID=40&md5=0d0fef0d7fa4b373c049b641035906f3 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8888/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021749609594880 |
spelling |
2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Journal of Energy Storage; Vol. 16, pp. 250-2582352152Xhttps://hdl.handle.net/20.500.12585/888810.1016/j.est.2018.01.014Universidad Tecnológica de BolívarRepositorio UTB569195641003644922350037104976300This paper presents an exact feedback linearization control strategy for voltage source converters (VSCs) applied to the integration of distributed energy resources (DERs) in smart distribution systems and microgrids. System dynamics is represented by an average nonlinear model which is transformed algebraically into an equivalent linear model by simple substitutions, avoiding to use Taylor's series or another equivalent linearization technique. The equivalent linear model preserves all characteristics of the nonlinear model, which implies that the control laws obtained are completely applicable on its nonlinear representation. Stability analysis is made using the passivity-based technique. The exact feedback linearization control in combination with passivity-based control (PBC) theory guarantees to obtain a global asymptotically stable controller in the sense of Lyapunov for its closed-loop representation. The effectiveness and robustness of the proposed methodology is tested in a low-voltage microgrid with a photovoltaic system, a supercapacitor energy storage (SCES) device and unbalance loads. All simulation scenarios are conducted in MATLAB/SIMULINK environment via SimPowerSystem library. © 2018 Elsevier LtdConsejo Nacional de Investigaciones Científicas y Técnicas Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Universidad Nacional de San Luis Department of Science, Information Technology and Innovation, Queensland GovernmentThis work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015, by PhD program in Engineering of the Universidad Tecnológica de Pereira, Colombia, by Universidad Nacional de San Luis, Argentina, and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Appendix ARecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042211743&doi=10.1016%2fj.est.2018.01.014&partnerID=40&md5=0d0fef0d7fa4b373c049b641035906f3DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distributed energy resource (DER)Exact feedback linearizationPassivity-based control (PBC)Stability analysisSupercapacitorVoltage source converter (VSC)Control system analysisDistributed power generationMATLABNonlinear systemsPhotovoltaic cellsSpatial variables controlSupercapacitorDistributed energy resourceExact feedback linearizationPassivity based controlStability analysisVoltage source converter (VSC)Feedback linearizationMontoya O.D.Garcés, AlejandroSerra F.M.Hussain, A., Arif, S.M., Aslam, M., Emerging renewable and sustainable energy technologies: state of the art (2017) Renew. Sustain. Energy Rev., 71, pp. 12-28Makky, A.A., Alaswad, A., Gibson, D., Olabi, A., Renewable energy scenario and environmental aspects of soil emission measurements (2017) Renew. Sustain. Energy Rev., 68, pp. 1157-1173Walker, S.B., van Lanen, D., Mukherjee, U., Fowler, M., Greenhouse gas emissions reductions from applications of power-to-gas in power generation (2017) Sustain. Energy Technol. Assess., 20, pp. 25-32Barma, M., Saidur, R., Rahman, S., Allouhi, A., Akash, B., Sait, S.M., A review on boilers energy use, energy savings, and emissions reductions (2017) Renew. Sustain. Energy Rev., 79, pp. 970-983Stadler, M., Siddiqui, A., Marnay, C., Aki, H., Lai, J., Control of greenhouse gas emissions by optimal DER technology investment and energy management in zero-net-energy buildings (2011) Eur. Trans. Electr. Power, 21 (2), pp. 1291-1309Al-falahi, M.D., Jayasinghe, S., Enshaei, H., A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system (2017) Energy Convers. Manage., 143, pp. 252-274Ellabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: current status, future prospects and their enabling technology (2014) Renew. Sustain. Energy Rev., 39, pp. 748-764Shanthi, P., Uma, G., Keerthana, M.S., Effective power transfer scheme for a grid connected hybrid wind/photovoltaic system (2017) IET Renew. Power Gener., 11 (7), pp. 1005-1017Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S., Overview of energy storage in renewable energy systems (2016) Int. J. Hydrogen Energy, 41 (45), pp. 20914-20927Li, X., Hui, D., Lai, X., Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations (2013) IEEE Trans. Sustain. Energy, 4 (2), pp. 464-473Ortega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Kaur, A., Kaushal, J., Basak, P., A review on microgrid central controller (2016) Renew. Sustain. Energy Rev., 55, pp. 338-345Mahmoud, M.S., Rahman, M.S.U., Sunni, F.M.A.L., Review of microgrid architectures: a system of systems perspective (2015) IET Renew. Power Gener., 9 (8), pp. 1064-1078Rezaei, M.M., Soltani, J., A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions (2015) Int. J. Electr. Power Energy Syst., 71, pp. 68-76. , http://www.sciencedirect.com/science/article/pii/S0142061515001246Habib, H.F., Mohamed, A., Hariri, M.E., Mohammed, O.A., Utilizing supercapacitors for resiliency enhancements and adaptive microgrid protection against communication failures (2017) Electr. Power Syst. Res., 145, pp. 223-233Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Rajesh, K., Dash, S., Rajagopal, R., Sridhar, R., A review on control of ac microgrid (2017) Renew. Sustain. Energy Rev., 71, pp. 814-819Tayab, U.B., Roslan, M.A.B., Hwai, L.J., Kashif, M., A review of droop control techniques for microgrid (2017) Renew. Sustain. Energy Rev., 76, pp. 717-727Szcześniak, P., Kaniewski, J., Power electronics converters without dc energy storage in the future electrical power network (2015) Electr. Power Syst. Res., 129, pp. 194-207Ortega, A., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst., 32 (3), pp. 2445-2454Badrzadeh, B., Power conversion systems for modern ac-dc power systems (2012) Eur. Trans. Electr. Power, 22 (7), pp. 879-906Hemmati, R., Azizi, N., Optimal control strategy on battery storage systems for decoupled active-reactive power control and damping oscillations (2017) J. Energy Storage, 13, pp. 24-34Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P., Control of power converters in AC microgrids (2012) IEEE Trans. Power Electron., 27 (11), pp. 4734-4749Palizban, O., Kauhaniemi, K., Distributed cooperative control of battery energy storage system in ac microgrid applications (2015) J. Energy Storage, 3, pp. 43-51Teodorescu, R., Liserre, M., Rodriguez, P., Grid Converters for Photovoltaic and Wind Power Systems (2011), Wiley – IEEEAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47Planas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E., AC and DC technology in microgrids: a review (2015) Renew. Sustain. Energy Rev., 43, pp. 726-749Zhang, F., Zhao, H., Hong, M., Operation of networked microgrids in a distribution system (2015) CSEE J. Power Energy Syst., 1 (4), pp. 12-21Rahim, A., Nowicki, E., Supercapacitor energy storage system for fault ride-through of a {DFIG} wind generation system (2012) Energy Convers. Manage., 59, pp. 96-102Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364Binkai, J., Zhixin, W., Jianlong, Z., Li, S., Study on an improved model predictive control strategy with power self-coordination for VSC-MTDC (2016) Energy Procedia, 100, pp. 261-265. , 3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8–10 September 2016, Kitakyushu, JapanFan, X., Guan, L., Xia, C., Ji, T., IDA-PB control design for VSC-HVDC transmission based on PCHD model (2015) Int. Trans. Electr. Energy Syst., 25 (10), pp. 2133-2143. , eTEP-13-0141.R1Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Serra, F.M., Angelo, C.H.D., Forchetti, D.G., Interconnection and damping assignment control of a three-phase front end converter (2014) Int. J. Electr. Power Energy Syst., 60, pp. 317-324Dhar, S., Dash, P., A new backstepping finite time sliding mode control of grid connected PV system using multivariable dynamic VSC model (2016) Int. J. Electr. Power Energy Syst., 82, pp. 314-330Khorramabadi, S.S., Bakhshai, A., Critic-based self-tuning pi structure for active and reactive power control of VSCs in microgrid systems (2015) IEEE Trans. Smart Grid, 6 (1), pp. 92-103Amoozegar, D., DSTATCOM modelling for voltage stability with fuzzy logic PI current controller (2016) Int. J. Electr. Power Energy Syst., 76, pp. 129-135Singh, B., Shahani, D.T., Verma, A.K., Neural network controlled grid interfaced solar photovoltaic power generation (2014) IET Power Electron., 7 (3), pp. 614-626Valenciaga, F., Puleston, P.F., Battaiotto, P.E., Mantz, R.J., Passivity/sliding mode control of a stand-alone hybrid generation system (2000) IEE Proc. Control Theory Appl., 147 (6), pp. 680-686Perez, M., Ortega, R., Espinoza, J.R., Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890Khalil, H., Nonlinear Systems, Always Learning (2013), Pearson Education, LimitedSlotine, J., Li, W., Applied Nonlinear Control (1991), Prentice-Hall International Editions Prentice-HallHaddad, W., Chellaboina, V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach (2011), Princeton University PressGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238Spth, H., Becker, K.-P., Energy storage by capacitors (2002) Eur. Trans. Electr. Power, 12 (3), pp. 211-216Palizban, O., Kauhaniemi, K., Energy storage systems in modern grids-matrix of technologies and applications (2016) J. Energy Storage, 6, pp. 248-259http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8888/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8888oai:repositorio.utb.edu.co:20.500.12585/88882023-05-26 09:51:38.266Repositorio Institucional UTBrepositorioutb@utb.edu.co |