A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items

The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each pr...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9038
Acceso en línea:
https://hdl.handle.net/20.500.12585/9038
Palabra clave:
Defective
Inventory
Supply chain
Collaborating systems
Defective
Defective products
Imperfect quality
Inventory
Optimal solutions
Optimal strategies
Supply chain modeling
Chains
Manufacture
Optimal systems
Profitability
Sales
Supply chains
Costs
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_95cc1eee4299a2864991ff7fa576a1b8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9038
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
title A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
spellingShingle A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
Defective
Inventory
Supply chain
Collaborating systems
Defective
Defective products
Imperfect quality
Inventory
Optimal solutions
Optimal strategies
Supply chain modeling
Chains
Manufacture
Optimal systems
Profitability
Sales
Supply chains
Costs
title_short A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
title_full A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
title_fullStr A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
title_full_unstemmed A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
title_sort A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
dc.subject.keywords.none.fl_str_mv Defective
Inventory
Supply chain
Collaborating systems
Defective
Defective products
Imperfect quality
Inventory
Optimal solutions
Optimal strategies
Supply chain modeling
Chains
Manufacture
Optimal systems
Profitability
Sales
Supply chains
Costs
topic Defective
Inventory
Supply chain
Collaborating systems
Defective
Defective products
Imperfect quality
Inventory
Optimal solutions
Optimal strategies
Supply chain modeling
Chains
Manufacture
Optimal systems
Profitability
Sales
Supply chains
Costs
description The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each product with a combination of several raw materials which are supplied by each supplier. The defective products at suppliers and manufacturers are sent back to the respective upstream members at lower price than the respective purchasing price. Finally, the expected average profits of suppliers, manufacturers and retailers are formulated by trading off set up costs, purchasing costs, screening costs, production costs, inventory costs and selling prices. The objective of this chain is to compare between the collaborating system and Stakelberg game structure so that the expected average profit of the chain is maximized. In a numerical illustration, the optimal solution of the collaborating system shows a better optimal solution than the approach by Stakelberg. © 2013 Elsevier Inc. All rights reserved.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:49Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:49Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Applied Mathematics and Computation; Vol. 229, pp. 139-150
dc.identifier.issn.none.fl_str_mv 00963003
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9038
dc.identifier.doi.none.fl_str_mv 10.1016/j.amc.2013.12.006
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 15078194000
57193533853
57193504630
identifier_str_mv Applied Mathematics and Computation; Vol. 229, pp. 139-150
00963003
10.1016/j.amc.2013.12.006
Universidad Tecnológica de Bolívar
Repositorio UTB
15078194000
57193533853
57193504630
url https://hdl.handle.net/20.500.12585/9038
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891709600&doi=10.1016%2fj.amc.2013.12.006&partnerID=40&md5=b4a2c07e787df809ed0c6667a2763459
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/1/MiniProdInv.png
https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/4/1-s2.0-S0096300313012800-main.pdf.jpg
https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/2/1-s2.0-S0096300313012800-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/3/1-s2.0-S0096300313012800-main.pdf.txt
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
2cb73621482a77a9a5fb6324c005c9d4
77de38fedf0d467a5a12a4fad5520686
401fc26dd65f32b9f3295c928226ce06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021760824115200
spelling 2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014Applied Mathematics and Computation; Vol. 229, pp. 139-15000963003https://hdl.handle.net/20.500.12585/903810.1016/j.amc.2013.12.006Universidad Tecnológica de BolívarRepositorio UTB150781940005719353385357193504630The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each product with a combination of several raw materials which are supplied by each supplier. The defective products at suppliers and manufacturers are sent back to the respective upstream members at lower price than the respective purchasing price. Finally, the expected average profits of suppliers, manufacturers and retailers are formulated by trading off set up costs, purchasing costs, screening costs, production costs, inventory costs and selling prices. The objective of this chain is to compare between the collaborating system and Stakelberg game structure so that the expected average profit of the chain is maximized. In a numerical illustration, the optimal solution of the collaborating system shows a better optimal solution than the approach by Stakelberg. © 2013 Elsevier Inc. All rights reserved.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891709600&doi=10.1016%2fj.amc.2013.12.006&partnerID=40&md5=b4a2c07e787df809ed0c6667a2763459A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple itemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1DefectiveInventorySupply chainCollaborating systemsDefectiveDefective productsImperfect qualityInventoryOptimal solutionsOptimal strategiesSupply chain modelingChainsManufactureOptimal systemsProfitabilitySalesSupply chainsCostsSana S.S.Chedid J.A.Navarro K.S.Cárdenas-Barrón, L.E., Observation on: Economic production quantity model for items with imperfect quality (2000) Int. J. Prod. Econ., 67, p. 201Cardenas-Barron, L.E., On optimal manufacturing batch size with rework process at single-stage production system (2007) Computers and Industrial Engineering, 53 (1), pp. 196-198. , DOI 10.1016/j.cie.2007.04.008, PII S036083520700068XCardenas-Barron, L.E., Optimizing inventory decisions in a multi-stage multi-customer supply chain: A note (2007) Transportation Research Part E: Logistics and Transportation Review, 43 (5), pp. 647-654. , DOI 10.1016/j.tre.2005.09.011, PII S1366554506000196Cárdenas-Barrón, L.E., Optimal manufacturing batch size with rework in a single-stage production system - A simple derivation (2008) Comput. Ind. Eng., 55, pp. 758-765Cárdenas-Barrón, L.E., Economic production quantity with rework process at a single stage manufacturing system with planned backorders (2009) Comput. Ind. Eng., 57, pp. 1105-1113Cárdenas-Barrón, L.E., Wee, H.M., Blos, M.F., Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality (2011) Math. Comput. Modell., 53, pp. 991-997Cárdenas-Barrón, L.E., Teng, J.T., Treviño-Garza, G., Wee, H.M., Lou, K.R., An improved algorithm and solution on an integrated production-inventory model in a three-layer supply chain (2012) Int. J. Prod. Econ., 136, pp. 384-388Cárdenas-Barrón, L.E., Treviño-Garza, G., Wee, H.M., A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model (2012) Expert Syst. Appl., 39, pp. 3888-3895Cárdenas-Barrón, L.E., Taleizadeh, A.A., Treviño-Garza, G., An improved solution to replenishment lot size problem with discontinuous issuing policy and rework, and the multi-delivery policy into economic production lot size problem with partial rework (2012) Expert Syst. Appl., 39, pp. 13540-13546Cárdenas-Barrón, L.E., Sarkar, B., Treviño-Garza, G., An improved solution to the replenishment policy for the EMQ model with rework and multiple shipments (2013) Appl. Math. Modell., 37, pp. 5549-5554Cárdenas-Barrón, L.E., Sarkar, B., Treviño-Garza, G., Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework (2013) Math. Comput. Appl., 18, pp. 132-138Chan, W.M., Ibrahim, R.N., Lochert, P.B., A new EPQ model: Integrating lower pricing, rework and reject situations (2003) Prod. Planning Control, 14, pp. 588-595Chiu, Y.P., Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging (2003) Eng. Opt., 35, pp. 427-437Goyal, S.K., Gunasekharan, A., An integrated production-inventory-marketing model for deteriorating item (1995) Comput. Ind. Eng., 28, pp. 755-762Goyal, S.K., Cardenas-Barron, L.E., Note on: Economic production quantity model for items with imperfect quality - A practical approach (2002) International Journal of Production Economics, 77 (1), pp. 85-87. , DOI 10.1016/S0925-5273(01)00203-1, PII S0925527301002031Jamal, A.A.M., Sarkar, B.R., Mondal, S., Optimal manufacturing batch size with rework process at single-stage production system (2008) Comput. Ind. Eng., 47, pp. 77-89Konstantaras, I., Goyal, S.K., Papachristos, S., Economic ordering policy for an item with imperfect quality subject to the in-house inspection (2007) International Journal of Systems Science, 38 (6), pp. 473-482. , DOI 10.1080/00207720701352837, PII 779087603Konstantaras, I., Skouri, K., Jaber, M.Y., Inventory models for imperfect quality items with shortages and learning in inspection (2012) Appl. Math. Modell., 36, pp. 5334-5343Liu, J.J., Yang, P., Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs (1996) European Journal of Operational Research, 91 (3), pp. 517-527. , DOI 10.1016/0377-2217(94)00339-4Papachristos, S., Konstantaras, I., Economic ordering quantity models for items with imperfect quality (2006) Int. J. Prod. Econ., 100, pp. 148-154Salameh, M.K., Jaber, M.Y., Economic production quantity model for items with imperfect quality (2000) International Journal of Production Economics, 64 (1), pp. 59-64. , DOI 10.1016/S0925-5273(99)00044-4Sana, S.S., A production-inventory model of imperfect quality products in a three-layer supply chain (2011) Decis. Support Syst., 50, pp. 539-547Sarkar, B., An inventory model with reliability in an imperfect production process (2012) Appl. Math. Comput., 218, pp. 4881-4891Sarkar, B., Sarkar, M., An economic manufacturing quantity model with probabilistic deterioration in a production system (2013) Econ. Modell., 31, pp. 245-252Teng, J.T., On the economic order quantity under conditions of permissible delay in payments (2002) J. Oper. Res. Soc., 53, pp. 915-918Teng, J.T., Cárdenas-Barrón, L.E., Lou, K.R., The economic lot size of the integrated vendor-buyer inventory system derived without derivatives: A simple derivation (2011) Appl. Math. Comput., 217, pp. 5972-5977Teng, J.T., Cárdenas-Barrón, L.E., Lou, K.R., Wee, H.M., Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives (2013) Int. J. Syst. Sci., 44, pp. 986-994Wang, Y., Gerchak, Y., Supply Chain Coordination when Demand Is Shelf-Space Dependent (2001) Manufacturing and Service Operations Management, 3 (1), pp. 82-87Zhang Xin, Gerchak Yigal, Joint lot sizing and inspection policy in an EOQ model with random yield (1990) IIE Transactions (Institute of Industrial Engineers), 22 (1), pp. 41-47Zhou, Y.W., Min, J., Goyal, S.K., Supply-chain coordination under an inventory-level-dependent demand rate (2008) Int. J. Prod. Econ., 113, pp. 518-527http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S0096300313012800-main.pdf.jpg1-s2.0-S0096300313012800-main.pdf.jpgGenerated Thumbnailimage/jpeg85568https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/4/1-s2.0-S0096300313012800-main.pdf.jpg2cb73621482a77a9a5fb6324c005c9d4MD54ORIGINAL1-s2.0-S0096300313012800-main.pdf1-s2.0-S0096300313012800-main.pdfapplication/pdf828116https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/2/1-s2.0-S0096300313012800-main.pdf77de38fedf0d467a5a12a4fad5520686MD52TEXT1-s2.0-S0096300313012800-main.pdf.txt1-s2.0-S0096300313012800-main.pdf.txtExtracted texttext/plain42210https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/3/1-s2.0-S0096300313012800-main.pdf.txt401fc26dd65f32b9f3295c928226ce06MD5320.500.12585/9038oai:repositorio.utb.edu.co:20.500.12585/90382022-03-03 02:21:16.948Repositorio Institucional UTBrepositorioutb@utb.edu.co