A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items
The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each pr...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9038
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9038
- Palabra clave:
- Defective
Inventory
Supply chain
Collaborating systems
Defective
Defective products
Imperfect quality
Inventory
Optimal solutions
Optimal strategies
Supply chain modeling
Chains
Manufacture
Optimal systems
Profitability
Sales
Supply chains
Costs
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_95cc1eee4299a2864991ff7fa576a1b8 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9038 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
title |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
spellingShingle |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items Defective Inventory Supply chain Collaborating systems Defective Defective products Imperfect quality Inventory Optimal solutions Optimal strategies Supply chain modeling Chains Manufacture Optimal systems Profitability Sales Supply chains Costs |
title_short |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
title_full |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
title_fullStr |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
title_full_unstemmed |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
title_sort |
A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items |
dc.subject.keywords.none.fl_str_mv |
Defective Inventory Supply chain Collaborating systems Defective Defective products Imperfect quality Inventory Optimal solutions Optimal strategies Supply chain modeling Chains Manufacture Optimal systems Profitability Sales Supply chains Costs |
topic |
Defective Inventory Supply chain Collaborating systems Defective Defective products Imperfect quality Inventory Optimal solutions Optimal strategies Supply chain modeling Chains Manufacture Optimal systems Profitability Sales Supply chains Costs |
description |
The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each product with a combination of several raw materials which are supplied by each supplier. The defective products at suppliers and manufacturers are sent back to the respective upstream members at lower price than the respective purchasing price. Finally, the expected average profits of suppliers, manufacturers and retailers are formulated by trading off set up costs, purchasing costs, screening costs, production costs, inventory costs and selling prices. The objective of this chain is to compare between the collaborating system and Stakelberg game structure so that the expected average profit of the chain is maximized. In a numerical illustration, the optimal solution of the collaborating system shows a better optimal solution than the approach by Stakelberg. © 2013 Elsevier Inc. All rights reserved. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:49Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Applied Mathematics and Computation; Vol. 229, pp. 139-150 |
dc.identifier.issn.none.fl_str_mv |
00963003 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9038 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.amc.2013.12.006 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
15078194000 57193533853 57193504630 |
identifier_str_mv |
Applied Mathematics and Computation; Vol. 229, pp. 139-150 00963003 10.1016/j.amc.2013.12.006 Universidad Tecnológica de Bolívar Repositorio UTB 15078194000 57193533853 57193504630 |
url |
https://hdl.handle.net/20.500.12585/9038 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891709600&doi=10.1016%2fj.amc.2013.12.006&partnerID=40&md5=b4a2c07e787df809ed0c6667a2763459 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/1/MiniProdInv.png https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/4/1-s2.0-S0096300313012800-main.pdf.jpg https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/2/1-s2.0-S0096300313012800-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/3/1-s2.0-S0096300313012800-main.pdf.txt |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 2cb73621482a77a9a5fb6324c005c9d4 77de38fedf0d467a5a12a4fad5520686 401fc26dd65f32b9f3295c928226ce06 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021760824115200 |
spelling |
2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014Applied Mathematics and Computation; Vol. 229, pp. 139-15000963003https://hdl.handle.net/20.500.12585/903810.1016/j.amc.2013.12.006Universidad Tecnológica de BolívarRepositorio UTB150781940005719353385357193504630The replenishment size/production lot size problem both for perfect and imperfect quality products studied in this paper is motivated by the optimal strategy in a three layer supply chain consisting of multiple suppliers, manufacturers and retailers. In this model, each manufacturer produces each product with a combination of several raw materials which are supplied by each supplier. The defective products at suppliers and manufacturers are sent back to the respective upstream members at lower price than the respective purchasing price. Finally, the expected average profits of suppliers, manufacturers and retailers are formulated by trading off set up costs, purchasing costs, screening costs, production costs, inventory costs and selling prices. The objective of this chain is to compare between the collaborating system and Stakelberg game structure so that the expected average profit of the chain is maximized. In a numerical illustration, the optimal solution of the collaborating system shows a better optimal solution than the approach by Stakelberg. © 2013 Elsevier Inc. All rights reserved.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891709600&doi=10.1016%2fj.amc.2013.12.006&partnerID=40&md5=b4a2c07e787df809ed0c6667a2763459A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple itemsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1DefectiveInventorySupply chainCollaborating systemsDefectiveDefective productsImperfect qualityInventoryOptimal solutionsOptimal strategiesSupply chain modelingChainsManufactureOptimal systemsProfitabilitySalesSupply chainsCostsSana S.S.Chedid J.A.Navarro K.S.Cárdenas-Barrón, L.E., Observation on: Economic production quantity model for items with imperfect quality (2000) Int. J. Prod. Econ., 67, p. 201Cardenas-Barron, L.E., On optimal manufacturing batch size with rework process at single-stage production system (2007) Computers and Industrial Engineering, 53 (1), pp. 196-198. , DOI 10.1016/j.cie.2007.04.008, PII S036083520700068XCardenas-Barron, L.E., Optimizing inventory decisions in a multi-stage multi-customer supply chain: A note (2007) Transportation Research Part E: Logistics and Transportation Review, 43 (5), pp. 647-654. , DOI 10.1016/j.tre.2005.09.011, PII S1366554506000196Cárdenas-Barrón, L.E., Optimal manufacturing batch size with rework in a single-stage production system - A simple derivation (2008) Comput. Ind. Eng., 55, pp. 758-765Cárdenas-Barrón, L.E., Economic production quantity with rework process at a single stage manufacturing system with planned backorders (2009) Comput. Ind. Eng., 57, pp. 1105-1113Cárdenas-Barrón, L.E., Wee, H.M., Blos, M.F., Solving the vendor-buyer integrated inventory system with arithmetic-geometric inequality (2011) Math. Comput. Modell., 53, pp. 991-997Cárdenas-Barrón, L.E., Teng, J.T., Treviño-Garza, G., Wee, H.M., Lou, K.R., An improved algorithm and solution on an integrated production-inventory model in a three-layer supply chain (2012) Int. J. Prod. Econ., 136, pp. 384-388Cárdenas-Barrón, L.E., Treviño-Garza, G., Wee, H.M., A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model (2012) Expert Syst. Appl., 39, pp. 3888-3895Cárdenas-Barrón, L.E., Taleizadeh, A.A., Treviño-Garza, G., An improved solution to replenishment lot size problem with discontinuous issuing policy and rework, and the multi-delivery policy into economic production lot size problem with partial rework (2012) Expert Syst. Appl., 39, pp. 13540-13546Cárdenas-Barrón, L.E., Sarkar, B., Treviño-Garza, G., An improved solution to the replenishment policy for the EMQ model with rework and multiple shipments (2013) Appl. Math. Modell., 37, pp. 5549-5554Cárdenas-Barrón, L.E., Sarkar, B., Treviño-Garza, G., Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework (2013) Math. Comput. Appl., 18, pp. 132-138Chan, W.M., Ibrahim, R.N., Lochert, P.B., A new EPQ model: Integrating lower pricing, rework and reject situations (2003) Prod. Planning Control, 14, pp. 588-595Chiu, Y.P., Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging (2003) Eng. Opt., 35, pp. 427-437Goyal, S.K., Gunasekharan, A., An integrated production-inventory-marketing model for deteriorating item (1995) Comput. Ind. Eng., 28, pp. 755-762Goyal, S.K., Cardenas-Barron, L.E., Note on: Economic production quantity model for items with imperfect quality - A practical approach (2002) International Journal of Production Economics, 77 (1), pp. 85-87. , DOI 10.1016/S0925-5273(01)00203-1, PII S0925527301002031Jamal, A.A.M., Sarkar, B.R., Mondal, S., Optimal manufacturing batch size with rework process at single-stage production system (2008) Comput. Ind. Eng., 47, pp. 77-89Konstantaras, I., Goyal, S.K., Papachristos, S., Economic ordering policy for an item with imperfect quality subject to the in-house inspection (2007) International Journal of Systems Science, 38 (6), pp. 473-482. , DOI 10.1080/00207720701352837, PII 779087603Konstantaras, I., Skouri, K., Jaber, M.Y., Inventory models for imperfect quality items with shortages and learning in inspection (2012) Appl. Math. Modell., 36, pp. 5334-5343Liu, J.J., Yang, P., Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs (1996) European Journal of Operational Research, 91 (3), pp. 517-527. , DOI 10.1016/0377-2217(94)00339-4Papachristos, S., Konstantaras, I., Economic ordering quantity models for items with imperfect quality (2006) Int. J. Prod. Econ., 100, pp. 148-154Salameh, M.K., Jaber, M.Y., Economic production quantity model for items with imperfect quality (2000) International Journal of Production Economics, 64 (1), pp. 59-64. , DOI 10.1016/S0925-5273(99)00044-4Sana, S.S., A production-inventory model of imperfect quality products in a three-layer supply chain (2011) Decis. Support Syst., 50, pp. 539-547Sarkar, B., An inventory model with reliability in an imperfect production process (2012) Appl. Math. Comput., 218, pp. 4881-4891Sarkar, B., Sarkar, M., An economic manufacturing quantity model with probabilistic deterioration in a production system (2013) Econ. Modell., 31, pp. 245-252Teng, J.T., On the economic order quantity under conditions of permissible delay in payments (2002) J. Oper. Res. Soc., 53, pp. 915-918Teng, J.T., Cárdenas-Barrón, L.E., Lou, K.R., The economic lot size of the integrated vendor-buyer inventory system derived without derivatives: A simple derivation (2011) Appl. Math. Comput., 217, pp. 5972-5977Teng, J.T., Cárdenas-Barrón, L.E., Lou, K.R., Wee, H.M., Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging derived without derivatives (2013) Int. J. Syst. Sci., 44, pp. 986-994Wang, Y., Gerchak, Y., Supply Chain Coordination when Demand Is Shelf-Space Dependent (2001) Manufacturing and Service Operations Management, 3 (1), pp. 82-87Zhang Xin, Gerchak Yigal, Joint lot sizing and inspection policy in an EOQ model with random yield (1990) IIE Transactions (Institute of Industrial Engineers), 22 (1), pp. 41-47Zhou, Y.W., Min, J., Goyal, S.K., Supply-chain coordination under an inventory-level-dependent demand rate (2008) Int. J. Prod. Econ., 113, pp. 518-527http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S0096300313012800-main.pdf.jpg1-s2.0-S0096300313012800-main.pdf.jpgGenerated Thumbnailimage/jpeg85568https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/4/1-s2.0-S0096300313012800-main.pdf.jpg2cb73621482a77a9a5fb6324c005c9d4MD54ORIGINAL1-s2.0-S0096300313012800-main.pdf1-s2.0-S0096300313012800-main.pdfapplication/pdf828116https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/2/1-s2.0-S0096300313012800-main.pdf77de38fedf0d467a5a12a4fad5520686MD52TEXT1-s2.0-S0096300313012800-main.pdf.txt1-s2.0-S0096300313012800-main.pdf.txtExtracted texttext/plain42210https://repositorio.utb.edu.co/bitstream/20.500.12585/9038/3/1-s2.0-S0096300313012800-main.pdf.txt401fc26dd65f32b9f3295c928226ce06MD5320.500.12585/9038oai:repositorio.utb.edu.co:20.500.12585/90382022-03-03 02:21:16.948Repositorio Institucional UTBrepositorioutb@utb.edu.co |