Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions
This work addressed the problem regarding the optimal integration of battery systems (BS) in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO2 emissions, for which it formulates a mathematical model that considers the constraints associated with the operation of GCNs...
- Autores:
-
Grisales-Noreña, Luis Fernando
Montoya, Oscar Danilo
Perea-Moreno, Alberto-Jesus
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12432
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12432
- Palabra clave:
- Electric Vehicle;
Vehicle-To-Grid;
Charging
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_95a861e990fbab9c895a719c68074fd9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12432 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
title |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
spellingShingle |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions Electric Vehicle; Vehicle-To-Grid; Charging LEMB |
title_short |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
title_full |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
title_fullStr |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
title_full_unstemmed |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
title_sort |
Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions |
dc.creator.fl_str_mv |
Grisales-Noreña, Luis Fernando Montoya, Oscar Danilo Perea-Moreno, Alberto-Jesus |
dc.contributor.author.none.fl_str_mv |
Grisales-Noreña, Luis Fernando Montoya, Oscar Danilo Perea-Moreno, Alberto-Jesus |
dc.subject.keywords.spa.fl_str_mv |
Electric Vehicle; Vehicle-To-Grid; Charging |
topic |
Electric Vehicle; Vehicle-To-Grid; Charging LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This work addressed the problem regarding the optimal integration of battery systems (BS) in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO2 emissions, for which it formulates a mathematical model that considers the constraints associated with the operation of GCNs in a distributed generation environment that includes BS and variable power generation related to photovoltaic (PV) distributed generation (DG) and demand. As solution strategies, three different master–slave methodologies are employed that are based on sequential programming methods, with the aim to avoid the implementation of commercial software. In the master stage, to solve the problem regarding the location and the type of batteries to be used, parallel-discrete versions of the Montecarlo method (PMC), a genetic algorithm (PDGA), and the search crow algorithm (PDSCA) are employed. In the slave stage, the particle swarm optimization algortihm (PSO) is employed to solve the problem pertaining to the operation of the batteries, using a matrix hourly power flow to assess the impact of each possible solution proposed by the master–slave methodologies on the objective functions and constraints. As a test scenario, a GCN based on the 33-bus test systems is used, which considers the generation, power demand, and CO2 emissions behavior of the city of Medellín (Colombia). Each algorithm is executed 1000 times, with the aim to evaluate the effectiveness of each solution in terms of its quality, standard deviation, and processing times. The simulation results obtained in this work demostrate that PMC/PSO is the master–slave methodology with the best performance in terms of solution quality, repeatability, and processing time. © 2023 by the authors. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T12:10:50Z |
dc.date.available.none.fl_str_mv |
2023-07-25T12:10:50Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Grisales-Noreña, L. F., Montoya, O. D., & Perea-Moreno, A. J. (2023). Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions. Mathematics, 11(7), 1604. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12432 |
dc.identifier.doi.none.fl_str_mv |
10.3390/math11071604 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Grisales-Noreña, L. F., Montoya, O. D., & Perea-Moreno, A. J. (2023). Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions. Mathematics, 11(7), 1604. 10.3390/math11071604 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12432 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
23 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Mathematics |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/1/mathematics-11-01604-v2%20%281%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/4/mathematics-11-01604-v2%20%281%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/5/mathematics-11-01604-v2%20%281%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
db8e76042cb0b0ad66d5a1ee9ffc7a28 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 5311984b40ef48b40a05ea0b15a41bee 9fdb6e800d3d760eb67d6dc4f2626c4c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021703300284416 |
spelling |
Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Perea-Moreno, Alberto-Jesuse78da438-8ed5-40ab-a12c-74e84e6d691b2023-07-25T12:10:50Z2023-07-25T12:10:50Z20232023Grisales-Noreña, L. F., Montoya, O. D., & Perea-Moreno, A. J. (2023). Optimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissions. Mathematics, 11(7), 1604.https://hdl.handle.net/20.500.12585/1243210.3390/math11071604Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis work addressed the problem regarding the optimal integration of battery systems (BS) in grid-connected networks (GCNs) with the purpose of reducing energy losses and CO2 emissions, for which it formulates a mathematical model that considers the constraints associated with the operation of GCNs in a distributed generation environment that includes BS and variable power generation related to photovoltaic (PV) distributed generation (DG) and demand. As solution strategies, three different master–slave methodologies are employed that are based on sequential programming methods, with the aim to avoid the implementation of commercial software. In the master stage, to solve the problem regarding the location and the type of batteries to be used, parallel-discrete versions of the Montecarlo method (PMC), a genetic algorithm (PDGA), and the search crow algorithm (PDSCA) are employed. In the slave stage, the particle swarm optimization algortihm (PSO) is employed to solve the problem pertaining to the operation of the batteries, using a matrix hourly power flow to assess the impact of each possible solution proposed by the master–slave methodologies on the objective functions and constraints. As a test scenario, a GCN based on the 33-bus test systems is used, which considers the generation, power demand, and CO2 emissions behavior of the city of Medellín (Colombia). Each algorithm is executed 1000 times, with the aim to evaluate the effectiveness of each solution in terms of its quality, standard deviation, and processing times. The simulation results obtained in this work demostrate that PMC/PSO is the master–slave methodology with the best performance in terms of solution quality, repeatability, and processing time. © 2023 by the authors.23 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2MathematicsOptimal Integration of Battery Systems in Grid-Connected Networks for Reducing Energy Losses and CO2 Emissionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Electric Vehicle;Vehicle-To-Grid;ChargingLEMBCartagena de IndiasKumar, C.M.S., Singh, S., Gupta, M.K., Nimdeo, Y.M., Raushan, R., Deorankar, A.V., Kumar, T.M.A., (...), Nannaware, A.D. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications (2023) Sustainable Energy Technologies and Assessments, 55, art. no. 102905. Cited 26 times. http://www.journals.elsevier.com/sustainable-energy-technologies-and-assessments doi: 10.1016/j.seta.2022.102905Ahmadipour, M., Murtadha Othman, M., Salam, Z., Alrifaey, M., Mohammed Ridha, H., Veerasamy, V. Optimal load shedding scheme using grasshopper optimization algorithm for islanded power system with distributed energy resources (2022) Ain Shams Engineering Journal, art. no. 101835. Cited 7 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2022.101835Henrique, L.F., Silva, W.N., Silva, C.C.A., Dias, B.H., Oliveira, L.W., de Almeida, M.C. Optimal siting and sizing of distributed energy resources in a Smart Campus (2023) Electric Power Systems Research, 217, art. no. 109095. Cited 2 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.109095Gómez, J.C., Morcos, M.M. Impact of EV battery chargers on the power quality of distribution systems (2003) IEEE Transactions on Power Delivery, 18 (3), pp. 975-981. Cited 372 times. doi: 10.1109/TPWRD.2003.813873Sumper, A. Impact of operation strategies of large scale battery systems on distribution grid planning in Germany (Open Access) (2017) Renewable and Sustainable Energy Reviews, 74, pp. 1042-1063. Cited 49 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.02.075Zichen, W., Changqing, D. A comprehensive review on thermal management systems for power lithium-ion batteries (Open Access) (2021) Renewable and Sustainable Energy Reviews, 139, art. no. 110685. Cited 83 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2020.110685Twaha, S., Ramli, M.A.M. A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid-connected systems (Open Access) (2018) Sustainable Cities and Society, 41, pp. 320-331. Cited 160 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2018.05.027Ramadesigan, V., Northrop, P.W.C., De, S., Santhanagopalan, S., Braatz, R.D., Subramanian, V.R. Modeling and simulation of lithium-ion batteries from a systems engineering perspective (2012) Journal of the Electrochemical Society, 159 (3), pp. R31-R45. Cited 522 times. doi: 10.1149/2.018203jesYang, Y., Bremner, S., Menictas, C., Kay, M. Battery energy storage system size determination in renewable energy systems: A review (2018) Renewable and Sustainable Energy Reviews, 91, pp. 109-125. Cited 492 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.03.047Sharma, P., Chinnappa Naidu, R. Optimization techniques for grid-connected PV with retired EV batteries in centralized charging station with challenges and future possibilities: A review (2023) Ain Shams Engineering Journal, 14 (7), art. no. 101985. Cited 9 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2022.101985Grisales-Noreña, L.F., Restrepo-Cuestas, B.J., Cortés-Caicedo, B., Montano, J., Rosales-Muñoz, A.A., Rivera, M. Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review (Open Access) (2023) Energies, 16 (1), art. no. 106. Cited 3 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en16010106Khezri, R., Mahmoudi, A., Aki, H. Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives (2022) Renewable and Sustainable Energy Reviews, 153, art. no. 111763. Cited 77 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2021.111763Manoj Kumar, N., Chopra, S.S., Chand, A.A., Elavarasan, R.M., Shafiullah, G.M. Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7 (Open Access) (2020) Sustainability (Switzerland), 12 (10), art. no. 3944. Cited 102 times. https://www.mdpi.com/2071-1050/12/10/3944 doi: 10.3390/SU12103944Naderipour, A., Kamyab, H., Klemeš, J.J., Ebrahimi, R., Chelliapan, S., Nowdeh, S.A., Abdullah, A., (...), Hedayati Marzbali, M. Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission (2022) Energy, 257, art. no. 124679. Cited 24 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2022.124679Wang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (Open Access) (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119Grisales-Noreña, L.F., Montoya, O.D., Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms (Open Access) (2019) Journal of Energy Storage, 25, art. no. 100891. Cited 42 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2019.100891Wei, C., Fadlullah, Z.M., Kato, N., Stojmenovic, I. On optimally reducing power loss in micro-grids with power storage devices (2014) IEEE Journal on Selected Areas in Communications, 32 (7), art. no. 6840287, pp. 1361-1370. Cited 54 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5678773 doi: 10.1109/JSAC.2014.2332077Yuan, Z., Wang, W., Wang, H., Yildizbasi, A. A new methodology for optimal location and sizing of battery energy storage system in distribution networks for loss reduction (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101368. Cited 49 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101368Karanki, S.B., Xu, D., Venkatesh, B., Singh, B.N. Optimal location of battery energy storage systems in power distribution network for integrating renewable energy sources (2013) 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, art. no. 6647310, pp. 4553-4558. Cited 56 times. ISBN: 978-147990335-1 doi: 10.1109/ECCE.2013.6647310Mohamed, S., Shaaban, M.F., Ismail, M., Serpedin, E., Qaraqe, K.A. An Efficient Planning Algorithm for Hybrid Remote Microgrids (2019) IEEE Transactions on Sustainable Energy, 10 (1), art. no. 8353437, pp. 257-267. Cited 93 times. doi: 10.1109/TSTE.2018.283244Grisales-Noreña, L.F., Rosales-Muñoz, A.A., Cortés-Caicedo, B., Montoya, O.D., Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow (2023) Mathematics, 11 (1), art. no. 93. Cited 5 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math11010093Revankar, S.R., Kalkhambkar, V.N. Grid integration of battery swapping station: A review (Open Access) (2021) Journal of Energy Storage, 41, art. no. 102937. Cited 37 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2021.102937Revankar, S.R., Kalkhambkar, V.N. Grid integration of battery swapping station: A review (Open Access) (2021) Journal of Energy Storage, 41, art. no. 102937. Cited 37 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2021.102937Zhan, W., Wang, Z., Zhang, L., Liu, P., Cui, D., Dorrell, D.G. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations (Open Access) (2022) Energy, 258, art. no. 124723. Cited 17 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2022.124723Molina-Martin, F., Montoya, O.D., Grisales-Noreña, L.F., Hernández, J.C., Ramírez-Vanegas, C.A. Simultaneous minimization of energy losses and greenhouse gas emissions in ac distribution networks using bess (2021) Electronics (Switzerland), 10 (9), art. no. 1002. Cited 13 times. https://www.mdpi.com/2079-9292/10/9/1002/pdf doi: 10.3390/electronics10091002Gil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Escobar-Mejía, A. Optimal economic–environmental operation of bess in ac distribution systems: A convex multi-objective formulation (Open Access) (2021) Computation, 9 (12), art. no. 137. Cited 5 times. https://www.mdpi.com/2079-3197/9/12/137/pdf doi: 10.3390/computation9120137Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488Abdelaziz, A.Y., Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 391-402. Cited 95 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2017.02.004Souza, J.D.C., Soares, S.F.C., de Paula, L.C.M., Coelho, C.J., de Araújo, M.C.U., Silva, E.C.D. Bat algorithm for variable selection in multivariate classification modeling using linear discriminant analysis (2023) Microchemical Journal, 187, art. no. 108382. www.elsevier.com/inca/publications/store/6/2/0/3/9/1 doi: 10.1016/j.microc.2022.108382Grisales-Noreña, L.F., Cortés-Caicedo, B., Alcalá, G., Montoya, O.D. Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks (Open Access) (2023) Mathematics, 11 (2), art. no. 387. Cited 5 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math11020387Grisales-Noreña, L.F., Garzon-Rivera, O.D., Ocampo-Toro, J.A., Ramos-Paja, C.A., Rodriguez Cabal, M.A. Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks (Open Access) (2020) Transactions on Energy Systems and Engineering Applications, 1 (1), pp. 13-31. Cited 14 times. revistas.utb.edu.co/tesea/ doi: 10.32397/tesea.vol1.n1.2Dolatabadi, S.H., Ghorbanian, M., Siano, P., Hatziargyriou, N.D. An Enhanced IEEE 33 Bus Benchmark Test System for Distribution System Studies (2021) IEEE Transactions on Power Systems, 36 (3), art. no. 9258930, pp. 2565-2572. Cited 79 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2020.3038030Shawon, S.M.R.H., Liang, X., Janbakhsh, M. Optimal Placement of Distributed Generation Units for Microgrid Planning in Distribution Networks (Open Access) (2023) IEEE Transactions on Industry Applications, 59 (3), pp. 2785-2795. Cited 3 times. https://ieeexplore.ieee.org/servlet/opac?punumber=28 doi: 10.1109/TIA.2023.3236363Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F., Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook (2021) Science of the Total Environment, 759, art. no. 143528. Cited 160 times. www.elsevier.com/locate/scitotenv doi: 10.1016/j.scitotenv.2020.143528http://purl.org/coar/resource_type/c_6501ORIGINALmathematics-11-01604-v2 (1).pdfmathematics-11-01604-v2 (1).pdfapplication/pdf793744https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/1/mathematics-11-01604-v2%20%281%29.pdfdb8e76042cb0b0ad66d5a1ee9ffc7a28MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmathematics-11-01604-v2 (1).pdf.txtmathematics-11-01604-v2 (1).pdf.txtExtracted texttext/plain80007https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/4/mathematics-11-01604-v2%20%281%29.pdf.txt5311984b40ef48b40a05ea0b15a41beeMD54THUMBNAILmathematics-11-01604-v2 (1).pdf.jpgmathematics-11-01604-v2 (1).pdf.jpgGenerated Thumbnailimage/jpeg8101https://repositorio.utb.edu.co/bitstream/20.500.12585/12432/5/mathematics-11-01604-v2%20%281%29.pdf.jpg9fdb6e800d3d760eb67d6dc4f2626c4cMD5520.500.12585/12432oai:repositorio.utb.edu.co:20.500.12585/124322023-07-26 00:17:44.145Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |