Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate?
The present manuscript describes a novel 3D-QSAR alignment free method (QuBiLS-MIDAS Duplex) based on algebraic bilinear, quadratic and linear forms on the kth two-tuple spatial-(dis)similarity matrix. Generalization schemes for the inter-atomic spatial distance using diverse (dis)-similarity measur...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9011
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9011
- Palabra clave:
- 3D-QSAR
Aggregation operator
Alignment free method
Minkowski distance matrix
Principal component analysis
QuBiLS-MIDAS
TOMOCOMD-CARDD
Two-tuple spatial-(dis)similarity matrix
Variability analysis
Corticosteroid
Globulin
Steroid
Article
Atom
Binding affinity
Data base
High throughput screening
Information
Methodology
Priority journal
Quantitative structure activity relation
Training
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_9577d9ec05955e486c8fec2cad83383f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9011 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
title |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
spellingShingle |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? 3D-QSAR Aggregation operator Alignment free method Minkowski distance matrix Principal component analysis QuBiLS-MIDAS TOMOCOMD-CARDD Two-tuple spatial-(dis)similarity matrix Variability analysis Corticosteroid Globulin Steroid Article Atom Binding affinity Data base High throughput screening Information Methodology Priority journal Quantitative structure activity relation Training |
title_short |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
title_full |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
title_fullStr |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
title_full_unstemmed |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
title_sort |
Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate? |
dc.subject.keywords.none.fl_str_mv |
3D-QSAR Aggregation operator Alignment free method Minkowski distance matrix Principal component analysis QuBiLS-MIDAS TOMOCOMD-CARDD Two-tuple spatial-(dis)similarity matrix Variability analysis Corticosteroid Globulin Steroid Article Atom Binding affinity Data base High throughput screening Information Methodology Priority journal Quantitative structure activity relation Training |
topic |
3D-QSAR Aggregation operator Alignment free method Minkowski distance matrix Principal component analysis QuBiLS-MIDAS TOMOCOMD-CARDD Two-tuple spatial-(dis)similarity matrix Variability analysis Corticosteroid Globulin Steroid Article Atom Binding affinity Data base High throughput screening Information Methodology Priority journal Quantitative structure activity relation Training |
description |
The present manuscript describes a novel 3D-QSAR alignment free method (QuBiLS-MIDAS Duplex) based on algebraic bilinear, quadratic and linear forms on the kth two-tuple spatial-(dis)similarity matrix. Generalization schemes for the inter-atomic spatial distance using diverse (dis)-similarity measures are discussed. On the other hand, normalization approaches for the two-tuple spatial-(dis)similarity matrix by using simple-and double-stochastic and mutual probability schemes are introduced. With the aim of taking into consideration particular inter-atomic interactions in total or local-fragment indices, path and length cut-off constraints are used. Also, in order to generalize the use of the linear combination of atom-level indices to yield global (molecular) definitions, a set of aggregation operators (invariants) are applied. A Shannon’s entropy based variability study for the proposed 3D algebraic form-based indices and the DRAGON molecular descriptor families demonstrates superior performance for the former. A principal component analysis reveals that the novel indices codify structural information orthogonal to those captured by the DRAGON indices. Finally, a QSAR study for the binding affinity to the corticosteroid-binding globulin using Cramer’s steroid database is performed. From this study, it is revealed that the QuBiLS-MIDAS Duplex approach yields similar-to-superior performance statistics than all the 3D-QSAR methods reported in the literature reported so far, even with lower degree of freedom, using both the 31 steroids as the training set and the popular division of Cramer’s database in training [1-21] and test sets [22-31]. It is thus expected that this methodology provides useful tools for the diversity analysis of compound datasets and high-throughput screening structure–activity data. © 2015 Bentham Science Publishers. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:46Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Current Bioinformatics; Vol. 10, Núm. 5; pp. 533-564 |
dc.identifier.issn.none.fl_str_mv |
15748936 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9011 |
dc.identifier.doi.none.fl_str_mv |
10.2174/1574893610666151008011457 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55665599200 56189852800 55363486500 56191215400 24436944800 55364135900 6506139148 6602882448 36454896800 |
identifier_str_mv |
Current Bioinformatics; Vol. 10, Núm. 5; pp. 533-564 15748936 10.2174/1574893610666151008011457 Universidad Tecnológica de Bolívar Repositorio UTB 55665599200 56189852800 55363486500 56191215400 24436944800 55364135900 6506139148 6602882448 36454896800 |
url |
https://hdl.handle.net/20.500.12585/9011 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927733368&doi=10.2174%2f1574893610666151008011457&partnerID=40&md5=49527a3c26afe0288f993e0ca3414432 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9011/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021674442424320 |
spelling |
2020-03-26T16:32:46Z2020-03-26T16:32:46Z2015Current Bioinformatics; Vol. 10, Núm. 5; pp. 533-56415748936https://hdl.handle.net/20.500.12585/901110.2174/1574893610666151008011457Universidad Tecnológica de BolívarRepositorio UTB5566559920056189852800553634865005619121540024436944800553641359006506139148660288244836454896800The present manuscript describes a novel 3D-QSAR alignment free method (QuBiLS-MIDAS Duplex) based on algebraic bilinear, quadratic and linear forms on the kth two-tuple spatial-(dis)similarity matrix. Generalization schemes for the inter-atomic spatial distance using diverse (dis)-similarity measures are discussed. On the other hand, normalization approaches for the two-tuple spatial-(dis)similarity matrix by using simple-and double-stochastic and mutual probability schemes are introduced. With the aim of taking into consideration particular inter-atomic interactions in total or local-fragment indices, path and length cut-off constraints are used. Also, in order to generalize the use of the linear combination of atom-level indices to yield global (molecular) definitions, a set of aggregation operators (invariants) are applied. A Shannon’s entropy based variability study for the proposed 3D algebraic form-based indices and the DRAGON molecular descriptor families demonstrates superior performance for the former. A principal component analysis reveals that the novel indices codify structural information orthogonal to those captured by the DRAGON indices. Finally, a QSAR study for the binding affinity to the corticosteroid-binding globulin using Cramer’s steroid database is performed. From this study, it is revealed that the QuBiLS-MIDAS Duplex approach yields similar-to-superior performance statistics than all the 3D-QSAR methods reported in the literature reported so far, even with lower degree of freedom, using both the 31 steroids as the training set and the popular division of Cramer’s database in training [1-21] and test sets [22-31]. It is thus expected that this methodology provides useful tools for the diversity analysis of compound datasets and high-throughput screening structure–activity data. © 2015 Bentham Science Publishers.Recurso electrónicoapplication/pdfengBentham Science Publishers B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84927733368&doi=10.2174%2f1574893610666151008011457&partnerID=40&md5=49527a3c26afe0288f993e0ca3414432Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate?info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb13D-QSARAggregation operatorAlignment free methodMinkowski distance matrixPrincipal component analysisQuBiLS-MIDASTOMOCOMD-CARDDTwo-tuple spatial-(dis)similarity matrixVariability analysisCorticosteroidGlobulinSteroidArticleAtomBinding affinityData baseHigh throughput screeningInformationMethodologyPriority journalQuantitative structure activity relationTrainingMarrero-Ponce Y.García-Jacas C.R.Barigye S.J.Valdés-Martiní J.R.Rivera-Borroto O.M.Pino-Urias R.W.Cubillán, NéstorAlvarado Y.J.Le-Thi-Thu H.Kubinyi, H., QSAR and 3D QSAR in Drug Design: 1. Methodology (1997) Drug Disc Today, 2, pp. 457-467Cramer, R.D., Patterson, D.E., Bunce, J.D., Comparative Molecular Field Analysis (CoMFA). 1. Effect of Shape on Binding of Steroids to Carrier Proteins (1988) J am Chem Soc, 110, pp. 5959-5967Fichera, M., Cruciani, G., Bianchi, A., Musumarra, G., A 3D-QSAR Study on the Structural Requirements for Binding to CB1 and CB2 Cannabinoid Receptors (2000) J Med Chem, 43 (12), pp. 2300-2309Martin, Y.C., 3.D. QSAR Current State, Scope, and Limitations (2002) Three-Dimensional Quantitative Structure Activity Relationships, pp. 3-23. , In: Kubinyi H, Folkers G, Y. C. Martin, editors, Netherlands: SpringerBaroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R., Clementi, S., Generating Optimal Linear, P., Estimations(GOLPE). An advanced chemometric tool for handling 3D-QSAR problems (1993) Quant Struct-Act Relat, 12, pp. 9-20Wagener, M., Sadowski, J., Gasteiger, J., Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah receptor (1995) J am Chem Soc, 117, pp. 7769-7775Cruciani, G., Watson, K.A., Comparative molecular field analysis using GRID force-field and GOLPE variable selection methods in a study of inhibitors of glycogen phosphorylase b (1994) J Med Chem, 37, pp. 2589-2601Ortiz, A.R., Pastor, M., Palomer, A., Cruciani, G., Gago, F., Wade, R.C., Reliability of comparative molecular field analysis models: Effects of data scaling and variable selection using a set of human synovial fluid phospholipase A(2) inhibitors (1997) J Med Chem, 40 (6), pp. 1136-1148Allen, M.S., La Loggia, A.J., Dorn, L.J., Predictive binding of a-Carboline Inverse Agonists and Antagonists via the CoMFA/GOLPE Approach (1992) J Med Chem, 35, pp. 4001-4010Cruciani, G., Clementi, S., Baroni, M., (1993) Variable Selection in PLS Analysis, , Kubinyi H, editor. Leiden: ESCOMPastor, M., Cruciani, G., Clementi, S., Smart region definition: A new way to improve the predictive ability and interpretability of threedimensional quantitative structure activity relationships (1997) J Med Chem, 40, pp. 1455-1464Good, A.C., So, S.S., Richards, W.G., Structure-activity relationships from molecular similarity matrixes (1993) J Med Chem, 36, pp. 433-438Parretti, M.F., Kroemer, R.T., Rothman, J.H., Richards, W.G., Alignment of Molecules by the Monte Carlo Optimization of Molecular Similarity Indices (1997) J Comput Chem, 18, pp. 1344-1353Allen, M.S., Tan, Y.C., Trudell, M.L., (1990) J Med Chem, 33, p. 2343Doweyko, A.M., Three-Dimensional Pharmacophores from Binding Data (1994) J Med Chem, 37, pp. 1769-1778Doweyko, A.M., The Hypothetical Active Site Lattice. An Approach to Modelling Active Sites From Data on Inhibitor Molecules (1988) J Med Chem, 31, pp. 1396-1406Guccione, S., Doweyko, A.M., Chen, H., Barretta, G.U., Balzano F. 3DQSAR Using ‘Multiconformer’ Alignment: The Use of HASL in the Analysis of 5-HT1A Thienopyrimidinone Ligands (2000) J Comput-Aided Mol Des, 14, pp. 647-657Consonni, V., Todeschini, R., Pavan, M., Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors. 1. Theory of the Novel 3D Molecular Descriptors (2002) J Chem Inf Comput Sci, 42 (3), pp. 682-692Gasteiger, G., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., Steinhauer, V., Chemical Information in 3D Space (1996) J Chem Inf Comput Sci, 36, pp. 1030-1037Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics, , 1st ed. Mannhold R, Kubinyi H, Folkers G, editors. Weinheim: WILEY-VCHBursi, R., Dao, D., Van Wijk, T., De Gooyer, M., Kellenbach, M., Verwer, P., Comparative Spectra Analysis (CoSA): Spectra as Three-Dimensional Molecular Descriptors for the Prediction of Biological Activities (1999) J Chem Inf Comput Sci, 39, pp. 861-867Turner, D.B., Willett, P., Ferguson, A.M., Heritage, T.W., Evaluation of a novel molecular vibration-based descriptor (EVA) for QSAR studies: 2. Model validation using a benchmark steroid dataset (1999) J Comput Aided Mol Des, 13, pp. 271-296Balaban, A.T., (1997) From Chemical Topology to Three-Dimensional Geometry, , editor, New York: Plenum PressBogdanov, B., Nikolic, S., Trinajstic, N., (1989) On the Three-Dimensional Wiener Number J Math Chem, 3, pp. 299-309Mekenyan, O., Peitchev, D., Bonchev, D., Trinajstic, N., Bangov, I.P., Modelling the Interaction of Small Organic Molecules with Biomacromolecules. I. Interaction of Substituted Pyridines with anti-3-azopyridine Antibody (1986) Arzneim Forsch, 36, pp. 176-183Randić, M., Molecular Profiles. Novel Geometry-Dependent Molecular Descriptors (1995) New J Chem, 19, pp. 781-791Randić, M., Razinger, M., On Characterization of Molecular Shapes (1995) J Chem Inf Comput Sci, 35, pp. 594-606Silverman, B.D., Platt, D.E., Pitman, M., Rigoutsos, I., (1998) Comparative Molecular Moment Analysis (COMMA), , editors, Dordrecht, The Netherlands: Kluwer Academic PublishersTominaga, Y., Fujiwara, I., Novel 3D Descriptors Using Excluded Volume: Application to 3D Quantitative Structure-Activity Relationships (1997) J Chem Inf Comput Sci, 37, pp. 1158-1161Marrero-Ponce, Y., Total and local (Atom and atom type) molecular quadratic indices: Significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications (2004) Bioorg Med Chem, 12, pp. 6351-6369Marrero-Ponce, Y., Torrens, F., Alvarado, Y.J., Rotondo, R., Bond-Based Global and Local (Bond and Bond-Type) Quadratic Indices and Their Applications to Computer-Aided Molecular Design. 1. QSPR Studies of Octane Isomers (2006) J Comput Aided Mol Des, 20, pp. 685-701Marrero Ponce, Y., Total and Local Quadratic Indices of the Molecular Pseudograph’s Atom Adjacency Matrix: Applications to the Prediction of Physical Properties of Organic Compounds (2003) Molecules, 8, pp. 687-726Marrero-Ponce, Y., Huesca-Guillèn, A., Ibarra-Velarde, F., Quadratic indices of the [`] molecular pseudograph's atom adjacency matrix' and their stochastic forms: A novel approach for virtual screening and in silico discovery of new lead paramphistomicide drugs-like compounds (2005) Journal of Molecular Structure: THEOCHEM, 717 (1-3), pp. 67-79Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Atom, atomtype and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic (2005) Bioorg Med Chem, 13 (4), pp. 1005-1020Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F., Atom-based 3Dchiral quadratic indices. Part 2: Prediction of the corticosteroidbinding globulinbinding affinity of the 31 benchmark steroids data set (2006) Bioorg Med Chem, 14, pp. 2398-2408Castillo-Garit, J.A., Marrero-Ponce, Y., Torrens, F., Rotondo, R., Atombased stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification (2007) J Mol Graph Model, 26 (1), pp. 32-47Marrero-Ponce, Y., Torrens, F., Garcìa-Domenech, R., Ortega-Broche, S.E., Romero Zaldivar, V., Novel 2D TOMOCOMD-CARDD molecular descriptors: Atom-based stochastic and non-stochastic bilinear indices and their QSPR applications (2008) J Math Chem, 44, pp. 650-673Marrero Ponce, Y., Martinez-Albelo, E.R., Casanola-Martin, G.M., Castillo Garit, J.A., Echeveria Diaz, Y., Bond-based linear indices of the non-stochasitic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules (2009) Mol Divers, p. 11030Marrero-Ponce, Y., Martìnez-Albelo, E., Casañola-Martìn, G., Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhysical properties of organic molecules (2010) Mol Divers, 14 (4), pp. 731-753Castillo-Garit, J.A., Martinez-Santiago, O., Marrero-Ponce, Y., Casañola-Martìn, G.M., Torrens, F., Atom-based non-stochastic and stochastic bilinear indices: Application to QSPR/QSAR studies of organic compounds (2008) Chem Phys Lett, 464 (1-3), pp. 107-112Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An Analysis of ALOGP and CLOGP Methods (1998) J Phys Chem A, 102, pp. 3762-3772Balaban, A.T., (1980) Steric Fit in Quantitative Structure-Activity Relations, , Springer-VerlagGasteiger, J., Marsili, M., Iterative partial equalization of orbital elektronegativity-a rapid access to atomic charges (1980) Tetrahedron, 36, pp. 3219-3288Ertl, P., Rohde, B., Selzer, P., Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties (2000) J Med Chem, 43, pp. 3714-3717Garcìa-Jacas, C.R., Marrero-Ponce, Y., Acevedo-Martìnez, L., Barigye, S.J., Valdès-Martinì, J.R., Contreras-Torres, E., QuBiLS-MIDAS: A Parallel Free-Software for Molecular Descriptors Computation Based on Multilinear Algebraic Maps (2014) J Comput Chem, 35 (18), pp. 1395-1409Garcia-Jacas, C.R., Aguilera-Mendoza, L., Gonzàlez-Pèrez, R., Multi-Server Approach for High-Throughput Molecular Descriptors Calculation based on Multi-Linear Algebraic Maps (2015) Mol Inf, 34 (1), pp. 60-69Steinbeck, C., Han, Y.Q., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.L., The Chemistry Development Kit (CDK): An open-source Java library for chemo-and bioinformatics (2003) J Chem Inf Comput Sci, 43 (2), pp. 493-500Marrero-Ponce, Y., Castillo-Garit, J., Torrens, F., Romero Zaldivar, V., Castro, E., Atom, Atom-Type, and Total Linear Indices of the “Molecular Pseudograph’s Atom Adjacency Matrix”: Application to QSPR/QSAR Studies of Organic Compounds (2004) Molecules, 9 (12), pp. 1100-1123Marrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-Zaldivar, V., Castro, E.A., Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: A promising approach for modeling of antibacterial activity (2005) Bioorg Med Chem, 13 (8), pp. 2881-2899Nikolic, S., Trinajstic, N., Mihalic, Z., Carter, S., On the geometricdistance matrix and the corresponding structural invariants of molecular systems (1991) Chem Phys Lett, 179 (1-2), pp. 21-28Devillers, J., Balaban, A.T., (1999) Topological Indices and Related Descriptors in QSAR and QSPR, , Amsterdam, The Netherland: Gordon and BreachVargas-Quesada, B., Anegòn, F.M., (2007) Visualizing the Structure of Science, , New York: SpringerWillett, P., Chemoinformatics – Similarity and Diversity in Chemical Libraries (2000) Curr Opinion Biotechnol, 11, pp. 85-88Balaban, A.T., Bertelsen, S., Basak, S.C., New centric topological indexes for acyclic molecules (Trees) and substituents (rooted trees), and coding of rooted trees (1994) MATCH Commun Math Comput Chem, 30, pp. 55-72Balaban, A.T., Feroiu, V., Correlations between structure and critical data or vapor pressures of alkanes by means of topological indices (1990) Rep Mol Theor, 1, pp. 133-139Holliday, J.D., Ranade, S.S., Willett, P., A Fast Algorithm for Selecting Sets of Dissimilar Molecules from Large Chemical Databases (1995) Quant Struct-Act Relat, 14, pp. 501-506Jones, P.E., Curtice, R.M., A Framework for Comparing Document Term Association Measures (1967) Am Doc, 18, pp. 153-161Gonzàlez-Dìaz, H., Uriarte, E., Proteins QSAR with Markov average electrostatic potentials (2005) Bioorg Med Chem Lett, 15 (22), pp. 5088-5094Ramos De Armas, R., Gonzàlez Dìaz, H., Molina, R., Uriarte, E., Markovian Backbone Negentropies: Molecular Descriptors for Protein Research. I. Predicting Protein Stability in Arc Repressor Mutants (2004) PROTEINS: Struc Funct Bioinform, 56, pp. 715-723Marrero-Ponce, Y., Castillo-Garit, J.A., Castro, E.A., Torrens, F., Rotondo, R., 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: Theory and QSAR applications to central chirality codification (2008) J Math Chem, 44, pp. 755-786Carbo-Dorca, R., Stochastic Transformation of Quantum Similarity Matrixes and Their Use in Quantum QSAR (QQSAR) Models (2000) Int J Quantum Chem, 79, pp. 163-177Edwards, C.H., Penney, D.E., (1988) Elementary Linear Algebra, , Englewoods Cliffs: Prentice HallSinkhorn, R., A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices (1964) Ann Math Statist, 35, pp. 876-879Sinkhorn, R., Knopp, P., Concerning nonnegative matrices and doubly stochastic matrices (1967) Pacific J Math, 21 (2), pp. 343-348Janežič, D., Miličević, A., Nikolić, S., Trinajstić, N., Graph Theoretical Matrices in Chemistry (2007) Mathematical Chemistry MonographsBarigye, S.J., Marrero-Ponce, Y., Santiago, O.M., Lòpez, Y.M., Torrens, F., (2013) Shannon’s, Mutual, Conditional and Joint Entropy-Based Information Indices, p. 9. , Generalization of Global Indices Defined from Local Vertex Invariants Curr Comput-Aided Drug DesBarigye, S.J., Marrero-Ponce, Y., Martìnez Lòpez, Y., Relations Frequency Hypermatrices in Mutual, Conditional and Joint Entropy-Based Information Indices (2013) J Comput Chem, 34, pp. 259-274Garcìa-Jacas, C.R., Marrero-Ponce, Y., Barigye, S.J., Valdès-Martini, J.R., Rivera-Borroto, O.M., Olivero-Verbel, J., N-Linear Algebraic Maps for Chemical Structure Codification: A Suitable Generalization for Atom-pair Approaches? (2014) Curr Drug Metab, 15 (4), pp. 441-469Godden, J.W., Stahura, F.L., Bajorath, J., Variability of Molecular Descriptors in Compound Databases Revealed by Shannon Entropy Calculations (2000) J Chem Inf Comput Sci, 40, pp. 796-800Pino-Urias, R.W., Barigye, S.J., Marrero-Ponce, Y., Garcìa-Jacas, C.R., Pèrez-Gimènez, F., Valdès-Martinì, J.R., IMMAN: Free Software for Information Theory-based Chemometric Analysis (2015) Mol Diversity, 19 (2), pp. 305-319Massey, W.F., Principal components regression in exploratory statistical research (1965) J Amer Stat Assoc, 60, pp. 234-256Mardia, K.V., Kent, J.T., Bibby, J.M., (1979) Multivariate Analysis, , London: Academic PressTodeschini, R., Consonni, V., Mauri, A., Pavan, M., Leardi, R., (2003) Mobydigs: Software for Regression and Classification Models by Genetic Algorithms, pp. 141-167. , Data Handling in Science and Technology: ElsevierRobert, D., Amat, L., Carbo-Dorca, R., Three-Dimensional Quantitative-Activity Relationships from Tuned Molecular Quantum Similarity Measures: Prediction of the Corticosteroid-Binding Globulin Binding Affinity for a Steroid Family (1999) J Chem Inf Comput Sci, 39, pp. 333-344So, S.S., Karplus, M., Three-dimensional quantitative structureactivity relationships from molecular similarity matrices and genetic neural networks. 1. Method and validations (1997) J Med Chem, 40, pp. 4347-4359. , Dec 19Sung-Sau, S., Karplus, M., Three-Dimensional Quantitative Structure-Activity Relationships from Molecular Similarity Matrices and Genetic Neural Networks. 2. Applications (1997) J Med Chem, 40, pp. 4360-4371Wolpert, D.H., Macready, W.G., No free lunch theorems for optimization (1997) IEEE Trans Evolut Comput, 1, pp. 67-82Amat, L., Besalu, E., Carbo-Dorca, R., Identification of Active Molecular Sites Using Quantum-Self-Similarity Measures (2001) J Chem Inf Comput Sci, 41, pp. 978-991Shu-Shen, L., Chun-Sheng, L.-S.W., Combined MEDV-GAMLR Method for QSAR of Three Panels of Steroids, Dipeptides, and COX-2 Inhibitors (2002) J Chem Inf Comput Sci, 42, pp. 749-756Beger, R.D., Harris, S.H., Xie, Q., Models of Steroid Binding Based on the Minimum Deviation of Structurally Assigned 13C NMR Spectra Analysis (MiDSASA) (2004) J Chem Inf Comput Sci, 44, pp. 1489-1496Polanski, J., The receptor-like neural network for modeling corticosteroid and testosterone binding globulins (1997) J Chem Inf Model, pp. 553-561Silverman, B.D., Platt, D.E., Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition (1996) J Med Chem, 39, pp. 2129-2140Tuppurainen, K., Viisas, M., Peräkylä, M., Laatikainen, R., Ligand intramolecular motions in ligand-protein interaction: ALPHA, a novel dynamic descriptor and a QSAR study with extended steroid benchmark dataset (2004) J Comp-Aided Mol Design, 18, pp. 175-187Tuppurainen, K., Viisas, M., Laatikainen, R., Perakyla, M., Evaluation of a Novel Electronic Eigenvalue (EEVA) Molecular Descriptor for QSAR/QSPR Studies: Validation Using a Benchmark Steroid Data Set (2002) J Chem Inf Comput Sci, 42, pp. 607-613Polanski, J., Bak, A., Modeling Steric and Electronic Effects in 3Dand 4D-QSAR Schemes: Predicting Benzoic pKa Values and Steroid CBG Binding Affinities (2003) J Chem Inf Comput Sci, 43, pp. 2081-2092De, K., Sengupta, C., Roy, K., QSAR modeling of globulin binding affinity of corticosteroids using AM1 calculations (2004) Bioorg Med Chem, 12, pp. 3323-3332Kellogg, G.E., Kier, L.B., Gaillard, P., Hall, L.H., E-state fields: Applications to 3D QSAR (1996) J Comput-Aided Mol Design, 10, pp. 513-520Beger, R.D., Wilkes, J.E., Developing 13C NMR quantitative spectrometric data-activity relationship (QSDAR) models of steroid binding to the corticosteroid binding globulin (2001) J Comp-Aided Mol Design, 15, pp. 659-669Carolina De Gregorio, L., Hall, L.H., QSAR modeling with electrotopological state indices: Corticosteroids (1998) J Comp-Aided Mol Design, 12, pp. 557-561Polanski, J., Walczak, B., The comparative molecular surface analysis (COMSA): A novel tool for molecular design (2000) Comput Chem, 24, pp. 615-625Pastor, M., Cruciani, G., McLay, I., Pickett, P., Clementi, S., GRid-INdependent Descriptors (GRIND): A Novel Class of Alignment-Independent Three-Dimensional Molecular Descriptors (2000) J Med Chem, 43, pp. 3233-3243Kubinyi, H., Hamprecht, F.A., Mietzner, T., Three-Dimensional Quantitative Similarity-Activity Relationships (3D QSiAR) from SEAL Similarity Matrices (1998) J Med Chem, 41, pp. 2553-2564Beger, R.D., Buzatu, D., Wilkes, J.G., Lay, J., J. O. Developing comparative structural connectivity spectra analysis (CoSCSA) models of steroid binding to the corticosteroid binding globulin (2002) J Chem Inf Comput Sci, 42, pp. 1123-1131Maw, H.H., Hall, L.H., E-state modeling of corticosteroids binding affinityvalidation of model for small data set (2001) J Chem Inf Comput Sci, 41, pp. 1248-1254Marìn, R.M., Aguirre, N.F., Daza, E.E., Graph Theoretical Similarity Approach To Compare Molecular Electrostatic Potentials (2008) J Chem Inf Model, 48, pp. 109-118Manchester, J., Czerminski, R., SAMFA: Simplifying Molecular Description for 3D-QSAR (2008) J Chem Inf Model, 48, pp. 1167-1173Andrew, C., Good SSS, W. Graham Richards. Structure-activity relationships from molecular similarity matrices (1993) J Med Chem, pp. 433-438Ajmani, S., Jadhav, K., Kulkarni, S.A., Three-Dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation (2005) J Chem Inf ModelCosentino, U., Moro, G., Bonalumi, D., A combined use of global and local approaches in 3D-QSAR (2000) Chemom Intell Laborat Sys, 52, pp. 183-194Norinder, U., Single and domain mode variable selection in 3D QSAR applications (1996) J Chemom, 10, pp. 95-105Vorpagel, E.R., Analysis of steroid binding using apex-3D and 3D QSAR models (1995) 210Th American Chemical Society Meeting, , Chicago, COMP-0125Ajay, N.J., Kimberle, K., Chapman, D., Compass: Predicting Biological Activities from Molecular Surface Properties. Performance Comparisons on a Steroid Benchmark (1994) J Med Chem, 37, pp. 2315-2327Tominaga, Y., Fujiwara, I., Prediction-Weighted Partial Least-Squares Regression Method (PWPLS) 2: Application to CoMFA (1997) J Chem Inf Comput Sci, 37, pp. 1152-1157Kotani, T., K. H.: Comparative Molecular Active Site Analysis (CoMASA). 1. An Approach to Rapid Evaluation of 3D QSAR (2004) J Med Chem, 47, pp. 2732-2742Chen, H., Zhou, J., Xie, G., A Genetic Evolved Algorithm To Predict Bioactivity (1998) J Chem Inf Comput Sci, 38, pp. 243-250Cho, S.J., Tropsha A. Cross-validated R2-guided region selection for comparative molecular field analysis: A simple method to achieve consistent results (1995) J Med Chem, 38, pp. 1060-1066Lowis, D.R., (1997) HQSAR: A New, Highly Predictive QSAR Technique Tripos Technique Notes, , Tripos: St Louis, MO, USAOprea, T.I., Ciubotariu, D., Sulea, T.I., Simon, Z., Comparison of the minimal steric difference (MTD) and comparative molecular field analysis (CoMFA) methods for analysis of binding of steroids to carrier proteins (1993) Quant Struct-Act Relat, 12, pp. 21-26Norinder, U., 3D-QSAR Investigation of the Tripos Benchmark Steroids and some Protein-Tyrosine Kinase Inhibitors of Styrene Type using the TDQ Approach (1996) J Chemom, 10 (5-6), pp. 533-545Bravi, G., Gancia, E., Mascagni, P., Pegna, M., Todeschini, R., Zaliani, A.J., MSWHIM, New 3D Theoretical Descriptors Derived from Molecular Surface Properties: A Comparative 3D QSAR Study in a Series of Steroids (1997) J Comput Aided Mol Des, 11, pp. 79-92Klebe, G., Abraham, U., Mietzner, T., Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity (1994) J Med Chem, 37, pp. 4130-4146Hahn, M., Rogers, D., Receptor Surface Models. 2. Application to Quantitative Structure-Activity Relationships Studies (1995) J Med Chem, 38, pp. 2091-2102Klein, C.T., Kaiser, D., Ecker, G., Topological Distance Based 3D Descriptors for Use in QSAR and Diversity Analysis (2004) J Chem Inf Comput Sci, 44, pp. 200-209Schnitker, J., Gopalaswamy, R., Crippen, G.M., Objective models for steroid binding sites of human globulins (1997) J Comput-Aided Mol Design, 11, pp. 93-110Palyulin, V.A., Radchenko, E.V., Zefirov, N.S., Molecular Field Topology Analysis Method in QSAR Studies of Organic Compounds (2000) J Chem Inform Comput Sci, 40, pp. 659-667Robinson, D.D., Winn, P.J., Lyne, P.D., Richards, W.G., Self-organizing molecular field analysis: A tool for structure-activity studies (1999) J Med Chem, 42, pp. 573-583Shu-Shen, L., Chun-Sheng, Y., Zhi-Liang, L., Shao-Xi, C., QSAR Study of Steroid Benchmark and Dipeptides Based on MEDV-13 (2001) J Chem Inf Comput Sci, 41, pp. 321-329Wildman, S.A., Crippen, G.M., Three-dimensional molecular descriptors and a novel QSAR method (2002) J Mol Graphics Modell, 21, pp. 161-170http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9011/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9011oai:repositorio.utb.edu.co:20.500.12585/90112023-05-25 16:23:32.266Repositorio Institucional UTBrepositorioutb@utb.edu.co |