A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia

There is a huge problem in public health around the world called severe maternal morbidity (SMM). It occurs during pregnancy, delivery, or puerperium. This condition establishes risk for babies and women lives since it’s earlier detection isn’t easy [8]. In order to respond to such a situation, the...

Full description

Autores:
Arrieta Rodríguez, Eugenia
López-Martínez, Fernando
Martínez Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9379
Acceso en línea:
https://hdl.handle.net/20.500.12585/9379
Palabra clave:
Severe maternal morbidity
Machine learning
Logistic regression
Support Vector Machine
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UTB2_94a3dd87943f3cc2d61b98e601a145da
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9379
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
title A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
spellingShingle A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
Severe maternal morbidity
Machine learning
Logistic regression
Support Vector Machine
title_short A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
title_full A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
title_fullStr A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
title_full_unstemmed A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
title_sort A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia
dc.creator.fl_str_mv Arrieta Rodríguez, Eugenia
López-Martínez, Fernando
Martínez Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Arrieta Rodríguez, Eugenia
López-Martínez, Fernando
Martínez Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Severe maternal morbidity
Machine learning
Logistic regression
Support Vector Machine
topic Severe maternal morbidity
Machine learning
Logistic regression
Support Vector Machine
description There is a huge problem in public health around the world called severe maternal morbidity (SMM). It occurs during pregnancy, delivery, or puerperium. This condition establishes risk for babies and women lives since it’s earlier detection isn’t easy [8]. In order to respond to such a situation, the current study suggests the use of logistic regression, and supports vector machine to construct a predicting model of risk level of maternal morbidity during pregnancy. Patients for the current study was the pregnant women who received prenatal care at Rafael Calvo Clinic in Cartagena, Colombia and final attention in the same clinic. This study presents the results of two machine learning algorithms, logistic regression and support vector machine. We validated the datasets from the first, second and third quarter of pregnancy with both techniques. The study shows that logistic regression achieves the best results with the prenatal control dataset from the first and second quarter and the support vector machine algorithm achieves the best prediction results with the data set from the third quarter. We generated two datasets using the information of medical records on pregnancy patients at Maternidad Rafael Calvo Clinic. The first dataset contains the six initial months of pregnancy data and the second dataset contains the last quarter of pregnancy data. We trained the first model with logistic regression and the datasets corresponding to the first semester of pregnancy. We obtained a classification of 97% sensibility, 51.8% positive predictive value and F1 score of 67.7%. The support vector machine model was implemented with the datasets obtained from the third quarter of pregnancy. We obtained a classifier with 100% of sensibility, 27.0% of precision.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-10T21:23:04Z
dc.date.available.none.fl_str_mv 2020-09-10T21:23:04Z
dc.date.issued.none.fl_str_mv 2020-05-22
dc.date.submitted.none.fl_str_mv 2020-09-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Otro
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Arrieta Rodríguez E., López-Martínez F., Martínez Santos J.C. (2020) A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_18
dc.identifier.isbn.none.fl_str_mv 978-3-030-47679-3
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9379
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-47679-3_18
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Arrieta Rodríguez E., López-Martínez F., Martínez Santos J.C. (2020) A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_18
978-3-030-47679-3
10.1007/978-3-030-47679-3_18
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9379
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Cartagena de Indias
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Lecture Notes in Computer Science, vol 12133.
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/1/28.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/6/28.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/7/28.pdf.jpg
bitstream.checksum.fl_str_mv a7278379a66fb684fdf52f315e73c9c7
24013099e9e6abb1575dc6ce0855efd5
e20ad307a1c5f3f25af9304a7a7c86b6
cea1bcb33053b608c289ccb2685902aa
3df29028596a6f96b673402b9525e0c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021598286446592
spelling Arrieta Rodríguez, Eugenia82d66ae8-db71-43c7-bb5d-c7d7d9c3b619López-Martínez, Fernando2bd271e9-44ba-4016-8ebc-d28833dad946Martínez Santos, Juan Carlos480cc438-b02b-45d2-bfc9-7bfa96f0271bCartagena de Indias2020-09-10T21:23:04Z2020-09-10T21:23:04Z2020-05-222020-09-07Arrieta Rodríguez E., López-Martínez F., Martínez Santos J.C. (2020) A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombia. In: Saeed K., Dvorský J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science, vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_18978-3-030-47679-3https://hdl.handle.net/20.500.12585/937910.1007/978-3-030-47679-3_18Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThere is a huge problem in public health around the world called severe maternal morbidity (SMM). It occurs during pregnancy, delivery, or puerperium. This condition establishes risk for babies and women lives since it’s earlier detection isn’t easy [8]. In order to respond to such a situation, the current study suggests the use of logistic regression, and supports vector machine to construct a predicting model of risk level of maternal morbidity during pregnancy. Patients for the current study was the pregnant women who received prenatal care at Rafael Calvo Clinic in Cartagena, Colombia and final attention in the same clinic. This study presents the results of two machine learning algorithms, logistic regression and support vector machine. We validated the datasets from the first, second and third quarter of pregnancy with both techniques. The study shows that logistic regression achieves the best results with the prenatal control dataset from the first and second quarter and the support vector machine algorithm achieves the best prediction results with the data set from the third quarter. We generated two datasets using the information of medical records on pregnancy patients at Maternidad Rafael Calvo Clinic. The first dataset contains the six initial months of pregnancy data and the second dataset contains the last quarter of pregnancy data. We trained the first model with logistic regression and the datasets corresponding to the first semester of pregnancy. We obtained a classification of 97% sensibility, 51.8% positive predictive value and F1 score of 67.7%. The support vector machine model was implemented with the datasets obtained from the third quarter of pregnancy. We obtained a classifier with 100% of sensibility, 27.0% of precision.11 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Lecture Notes in Computer Science, vol 12133.A Machine Learning Approach for Severe Maternal Morbidity Prediction at Rafael Calvo Clinic in Cartagena-Colombiainfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionOtrohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Severe maternal morbidityMachine learningLogistic regressionSupport Vector MachineCartagena de IndiasPúblico generalCaicedo-Torres, W., Paternina, Á., Pinzón, H.: Machine learning models for early dengue severity prediction. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 247–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_21Calvert, J.S., et al.: A computational approach to early sepsis detection. Comput. Biol. Med. 74, 69–73 (2016)Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and validation using national health data from Kuwait—a cohort study. BMJ Open 3(5), e002457 (2013)Fawcett, T.: ROC graphs: notes and practical considerations for researchers. Mach. Learn. 31(1), 1–38 (2004)Feizi-Derakhshi, M.R., Ghaemi, M.: Classifying different feature selection algorithms based on the search strategies. In: International Conference on Machine Learning, Electrical and Mechanical Engineering (2014)Haaga, J.G., Wasserheit, J.N., Tsui, A.O., et al.: Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions. National Academies Press, Washington, D.C. (1997)Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)Jahan, S., Begum, K., Shaheen, N., Khandokar, M.: Near-miss/severe acute maternal morbidity (SAMM): a new concept in maternal care. J. Bangladesh Coll. Phys. Surg. 24(1), 29–33 (2006)Lorduy Gómez, J., Carrillo González, S., Muñoz Baldiris, R.E., Díaz-Pérez, A., Perez, I.: Prognostic factors of early neonatal sepsis in the city of Cartagena Colombia (2018)Mani, S., et al.: Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med. Inform. Assoc. 21(2), 326–336 (2014)Nanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H.: Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 31(2), 135–141 (2011)Ng, A.: Machine learning: Stanford machine learning course materialsNilashi, M., bin Ibrahim, O., Ahmadi, H., Shahmoradi, L.: An analytical method for diseases prediction using machine learning techniques. Comput. Chem. Eng. 106, 212–223 (2017)World Health Organization, UNICEF: Revised 1990 estimates of maternal mortality: a new approach. World Health Organization (1996)Park, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A.: Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust. N. Z. J. Obstet. Gynaecol. 53(6), 532–539 (2013)Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)Poon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H.: First-trimester prediction of hypertensive disorders in pregnancy. Hypertension 53(5), 812–818 (2009)Rodríguez, E.A., Estrada, F.E., Torres, W.C., Santos, J.C.M.: Early prediction of severe maternal morbidity using machine learning techniques. In: Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.) IBERAMIA 2016. LNCS (LNAI), vol. 10022, pp. 259–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47955-2_22Tsui, A.O., Wasserheit, J.N., Haaga, J.G., et al.: Healthy pregnancy and childbearing (1997)Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)Yang, Z., Zhang, T., Lu, J., Zhang, D., Kalui, D.: Optimizing area under the ROC curve via extreme learning machines. Knowl.-Based Syst. 130, 74–89 (2017)Zheng, Z., Li, Y., Cai, Y.: The logistic regression analysis on risk factors of hypertension among peasants in east china & its results validating. Int. J. Comput. Sci. Issues (IJCSI) 10(2 Part 1), 416 (2013)http://purl.org/coar/resource_type/c_c94fORIGINAL28.pdf28.pdfPonenciaapplication/pdf1318435https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/1/28.pdfa7278379a66fb684fdf52f315e73c9c7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT28.pdf.txt28.pdf.txtExtracted texttext/plain55647https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/6/28.pdf.txtcea1bcb33053b608c289ccb2685902aaMD56THUMBNAIL28.pdf.jpg28.pdf.jpgGenerated Thumbnailimage/jpeg23373https://repositorio.utb.edu.co/bitstream/20.500.12585/9379/7/28.pdf.jpg3df29028596a6f96b673402b9525e0c1MD5720.500.12585/9379oai:repositorio.utb.edu.co:20.500.12585/93792020-10-23 05:21:12.054Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=