Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins
The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8989
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8989
- Palabra clave:
- Atom-based quadratic indices
Cancer
CHEMBL
Malaria
Moving average
Multi-scale and multi-output model
Multi-target
QSAR
UPP inhibitor
Antineoplastic agent
Proteasome
Ubiquitin
Antimalarial agent
Antineoplastic agent
Proteasome
Ubiquitin
ALMA model
Apoptosis
Article
Bob Jenkins operator
Cell cycle
Computer program
Diagnostic accuracy
DNA repair
Gene expression
Malaria
Model
Mus musculus
Oryctolagus cuniculus
Plasmodium falciparum
Quantitative structure activity relation
Rattus norvegicus
Sensitivity and specificity
Signal transduction
Biology
Drug database
Drug development
Drug effects
Human
Malaria
Metabolism
Molecularly targeted therapy
Neoplasms
Protein degradation
Antimalarials
Antineoplastic agents
Computational Biology
Databases, Pharmaceutical
Drug Discovery
Humans
Malaria
Molecular Targeted Therapy
Neoplasms
Proteasome Endopeptidase Complex
Proteolysis
Ubiquitin
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_949e2a661aef8b33b48a8f795372b7a3 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8989 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
title |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
spellingShingle |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins Atom-based quadratic indices Cancer CHEMBL Malaria Moving average Multi-scale and multi-output model Multi-target QSAR UPP inhibitor Antineoplastic agent Proteasome Ubiquitin Antimalarial agent Antineoplastic agent Proteasome Ubiquitin ALMA model Apoptosis Article Bob Jenkins operator Cell cycle Computer program Diagnostic accuracy DNA repair Gene expression Malaria Model Mus musculus Oryctolagus cuniculus Plasmodium falciparum Quantitative structure activity relation Rattus norvegicus Sensitivity and specificity Signal transduction Biology Drug database Drug development Drug effects Human Malaria Metabolism Molecularly targeted therapy Neoplasms Protein degradation Antimalarials Antineoplastic agents Computational Biology Databases, Pharmaceutical Drug Discovery Humans Malaria Molecular Targeted Therapy Neoplasms Proteasome Endopeptidase Complex Proteolysis Ubiquitin |
title_short |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
title_full |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
title_fullStr |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
title_full_unstemmed |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
title_sort |
Multi-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins |
dc.subject.keywords.none.fl_str_mv |
Atom-based quadratic indices Cancer CHEMBL Malaria Moving average Multi-scale and multi-output model Multi-target QSAR UPP inhibitor Antineoplastic agent Proteasome Ubiquitin Antimalarial agent Antineoplastic agent Proteasome Ubiquitin ALMA model Apoptosis Article Bob Jenkins operator Cell cycle Computer program Diagnostic accuracy DNA repair Gene expression Malaria Model Mus musculus Oryctolagus cuniculus Plasmodium falciparum Quantitative structure activity relation Rattus norvegicus Sensitivity and specificity Signal transduction Biology Drug database Drug development Drug effects Human Malaria Metabolism Molecularly targeted therapy Neoplasms Protein degradation Antimalarials Antineoplastic agents Computational Biology Databases, Pharmaceutical Drug Discovery Humans Malaria Molecular Targeted Therapy Neoplasms Proteasome Endopeptidase Complex Proteolysis Ubiquitin |
topic |
Atom-based quadratic indices Cancer CHEMBL Malaria Moving average Multi-scale and multi-output model Multi-target QSAR UPP inhibitor Antineoplastic agent Proteasome Ubiquitin Antimalarial agent Antineoplastic agent Proteasome Ubiquitin ALMA model Apoptosis Article Bob Jenkins operator Cell cycle Computer program Diagnostic accuracy DNA repair Gene expression Malaria Model Mus musculus Oryctolagus cuniculus Plasmodium falciparum Quantitative structure activity relation Rattus norvegicus Sensitivity and specificity Signal transduction Biology Drug database Drug development Drug effects Human Malaria Metabolism Molecularly targeted therapy Neoplasms Protein degradation Antimalarials Antineoplastic agents Computational Biology Databases, Pharmaceutical Drug Discovery Humans Malaria Molecular Targeted Therapy Neoplasms Proteasome Endopeptidase Complex Proteolysis Ubiquitin |
description |
The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. © 2016 Bentham Science Publishers. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:43Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:43Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Current Protein and Peptide Science; Vol. 17, Núm. 3; pp. 220-227 |
dc.identifier.issn.none.fl_str_mv |
13892037 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8989 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
9434652400 36454896800 6701762262 55665599200 6602955498 7103043662 6603767394 |
identifier_str_mv |
Current Protein and Peptide Science; Vol. 17, Núm. 3; pp. 220-227 13892037 Universidad Tecnológica de Bolívar Repositorio UTB 9434652400 36454896800 6701762262 55665599200 6602955498 7103043662 6603767394 |
url |
https://hdl.handle.net/20.500.12585/8989 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
publisher.none.fl_str_mv |
Bentham Science Publishers B.V. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84961704457&partnerID=40&md5=7b0b58b4cfd95174bb7c8a0deac6d6ba |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8989/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021687035822080 |
spelling |
2020-03-26T16:32:43Z2020-03-26T16:32:43Z2016Current Protein and Peptide Science; Vol. 17, Núm. 3; pp. 220-22713892037https://hdl.handle.net/20.500.12585/8989Universidad Tecnológica de BolívarRepositorio UTB943465240036454896800670176226255665599200660295549871030436626603767394The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory proteins. Cellular processes such as the cell cycle, signal transduction, gene expression, DNA repair and apoptosis are regulated by this UPP and dysfunctions in this system have important implications in the development of cancer, neurodegenerative, cardiac and other human pathologies. UPP seems also to be very important in the function of eukaryote cells of the human parasites like Plasmodium falciparum, the causal agent of the neglected disease Malaria. Hence, the UPP could be considered as an attractive target for the development of compounds with Anti-Malarial or Anti-cancer properties. Recent online databases like ChEMBL contains a larger quantity of information in terms of pharmacological assay protocols and compounds tested as UPP inhibitors under many different conditions. This large amount of data give new openings for the computer-aided identification of UPP inhibitors, but the intrinsic data diversity is an obstacle for the development of successful classifiers. To solve this problem here we used the Bob-Jenkins moving average operators and the atom-based quadratic molecular indices calculated with the software TOMOCOMD-CARDD (TC) to develop a quantitative model for the prediction of the multiple outputs in this complex dataset. Our multi-target model can predict results for drugs against 22 molecular or cellular targets of different organisms with accuracies above 70% in both training and validation sets. © 2016 Bentham Science Publishers.Ministerio de Economía y Competitividad: CTQ2013-41229-Pproteasome, 140879-24-9; ubiquitin, 60267-61-0; Antimalarials; Antineoplastic Agents; Proteasome Endopeptidase Complex; UbiquitinGonzalez-Diaz H. acknowledges financial support from the grant MINECO (CTQ2013-41229-P), Spain.Recurso electrónicoapplication/pdfengBentham Science Publishers B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84961704457&partnerID=40&md5=7b0b58b4cfd95174bb7c8a0deac6d6baMulti-output model with box-jenkins operators of quadratic indices for prediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteinsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Atom-based quadratic indicesCancerCHEMBLMalariaMoving averageMulti-scale and multi-output modelMulti-targetQSARUPP inhibitorAntineoplastic agentProteasomeUbiquitinAntimalarial agentAntineoplastic agentProteasomeUbiquitinALMA modelApoptosisArticleBob Jenkins operatorCell cycleComputer programDiagnostic accuracyDNA repairGene expressionMalariaModelMus musculusOryctolagus cuniculusPlasmodium falciparumQuantitative structure activity relationRattus norvegicusSensitivity and specificitySignal transductionBiologyDrug databaseDrug developmentDrug effectsHumanMalariaMetabolismMolecularly targeted therapyNeoplasmsProtein degradationAntimalarialsAntineoplastic agentsComputational BiologyDatabases, PharmaceuticalDrug DiscoveryHumansMalariaMolecular Targeted TherapyNeoplasmsProteasome Endopeptidase ComplexProteolysisUbiquitinCasañola-Martín G.M.Le-Thi-Thu H.Pérez-Giménez F.Marrero-Ponce Y.Merino-Sanjuán M.Abad C.González-Díaz H.Tu, Y., Chen, C., Pan, J., Xu, J., Zhou, Z.G., Wang, C.Y., The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis (2012) Int. J. Clin. Exp. Pathol., 5 (8), pp. 726-738Driscoll, J.J., Dechowdhury, R., Therapeutically targeting the SUMOylation, ubiquitination and proteasome pathways as a novel anticancer strategy (2010) Targ. Oncol., 5 (4), pp. 281-289Stein, M.L., Groll, M., Applied techniques for mining natural proteasome inhibitors. BBA-Mol (2014) Cell. Res., 1843 (1), pp. 26-38Aminake, M.N., Arndt, H.D., Pradel, G., The proteasome of malaria parasites: A multi-stage drug target for chemotherapeutic intervention (2012) Int. J. Parasitol. Drugs Drug Resist., 2, pp. 1-10Casañola-Martin, G.M., Le-Thi-Thu, H., Marrero-Ponce, Y., Castillo- Garit, J.A., Torrens, F., Perez-Gimenez, F., Abad, C., Analysis of Proteasome Inhibition Prediction Using Atom-Based Quadratic Indices Enhanced by Machine Learning Classification Techniques (2014) Lett. Drug Des. Discov., 11 (6), pp. 705-711Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A., Light, Y., Overington, J.P., ChEMBL: A large-scale bioactivity database for drug discovery (2012) Nucleic Acids Res., 40 (Database issue), pp. D1100-1107Heikamp, K., Bajorath, J., Large-scale similarity search profiling of ChEMBL compound data sets (2011) J. Chem. Inf. Model, 51 (8), pp. 1831-1839Mok, N.Y., Brenk, R., Mining the ChEMBL database: An efficient chemoinformatics workflow for assembling an ion channel-focused screening library (2011) J. Chem. Inf. Model, 51 (10), pp. 2449-2454Hu, Y., Bajorath, J., Molecular scaffolds with high propensity to form multi-target activity cliffs (2010) J. Chem. Inf. Model, 50 (4), pp. 500-510Erhan, D., L'heureux, P.J., Yue, S.Y., Bengio, Y., Collaborative filtering on a family of biological targets (2006) J. Chem. Inf. Model, 46 (2), pp. 626-635Namasivayam, V., Hu, Y., Balfer, J., Bajorath, J., Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using emerging chemical patterns (2013) J. Chem. Inf. Model, 53 (6), pp. 1272-1281Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L., Vidal, M., Drug-target network. Nat (2007) Biotechnol., 25 (10), pp. 1119-1126Tenorio-Borroto, E., Garcia-Mera, X., Penuelas-Rivas, C.G., Vasquez-Chagoyan, J.C., Prado-Prado, F.J., Castanedo, N., Gonzalez- Diaz, H., Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity (2013) Curr. Top. Med. Chem., 13 (14), pp. 1636-1649Box, G.E.P., Jenkins, G.M., Time series analysis (1970) Holden-Day, p. 553Speck-Planche, A., Kleandrova, V.V., Cordeiro, M.N., Chemoinformatics for rational discovery of safe antibacterial drugs: Simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals (2013) Bioorg. Med. Chem, 21 (10), pp. 2727-2732Speck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Chemoinformatics in multi-target drug discovery for anti-cancer therapy: In silico design of potent and versatile anti-brain tumor agents (2012) Anticancer Agents Med.Chem., 12 (6), pp. 678-685Speck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Chemoinformatics in anti-cancer chemotherapy: Multi-target QSAR model for the in silico discovery of anti-breast cancer agents (2012) Eur. J. Pharm. Sci., 47 (1), pp. 273-279Marrero-Ponce, Y., Valdés-Martini, J.R., García Jacas, C.R., (2012) TOMOCOMD- CARDD. Qubils Software Qubils-Mas. Version 1.0, , CAMD-BIR Unit, Universidad Central “Marta Abreu” de Las VillasMarrero-Ponce, Y., Total and Local Quadratic Indices of the Molecular Pseudograph´s Atom Adjacency Matrix:Applications to the Prediction of Physical Properties of Organic Compounds (2003) Molecules, 8, pp. 687-726Montero-Torres, A., Garcia-Sanchez, R.N., Marrero-Ponce, Y., Machado-Tugores, Y., Nogal-Ruiz, J.J., Martinez-Fernandez, A.R., Aran, V.J., Torrens, F., Nonstochastic quadratic fingerprints and LDA-based QSAR models in hit and lead generation through virtual screening: Theoretical and experimental assessment of a promising method for the discovery of new antimalarial compounds (2006) Eur. J. Med. Chem., 41 (4), pp. 483-493Meneses-Marcel, A., Marrero-Ponce, Y., Machado-Tugores, Y., Montero-Torres, A., Pereira, D.M., Escario, J.A., Nogal-Ruiz, J.J., Garcia Sanchez, R.N., A linear discrimination analysis based virtual screening of trichomonacidal lead-like compounds: Outcomes of in silico studies supported by experimental results (2005) Bioorg. Med. Chem. Lett., 15 (17), pp. 3838-3843Rescigno, A., Casañola-Martin, G.M., Sanjust, E., Zucca, P., Marrero- Ponce, Y., Vanilloid Derivatives as Tyrosinase Inhibitors Driven by Virtual Screening-Based QSAR Models (2011) Drug Test. Anal., 3 (3), pp. 176-181Le-Thi-Thu, H., Marrero-Ponce, Y., Casanola Martin, G.M., Cardoso, G.C., Chávez, M.C., Garcia, M.M., Morell, C., Abad, C., Nonlinear Supervised Machine Learning Approaches for QSAR Depiction of Tyrosinase Inhibitory Activity (2011) Mol. Inform., 30 (6-7), pp. 527-537Huong Le-Thi-Thu, H., Cardoso, G.C., Casañola-Martín, G.M., Marrero-Ponce, Y., Puris, A., Torrens, F., Rescigno, A., Abad, C., QSAR Models for Tyrosinase Inhibitory Activity Description Applying Modern Statistical Classification Techniques: A Comparative Study (2010) Chemom. Int. Lab. Sys., 104, pp. 249-259Marrero-Ponce, Y., Medina, R., Castro, E.A., De Armas, R., González, H., Romero, V., Torrens, F., Protein Quadratic Indices of the ¨Macromolecular Pseudograph´s α-Carbon Atom Adjacency Matrix. 1. Prediction of Arc Repressor Alanine-mutant´s Stability (2004) Molecules, 9, pp. 1124-1147Marrero-Ponce, Y., Nodarse, D., González, H.D., Ramos De Armas, R., Romero-Zaldivar, V., Torrens, F., Castro, E., Nucleic Acid Quadratic Indices of the Macromolecular Graph’s Nucleotides Adjacency Matrix. Modeling of Footprints after the Interaction of Paromomycin with the HIV-1 Ψ-RNA Packaging Region (2004) Int. J. Mol. Sci., 5, pp. 276-293Luan, F., Cordeiro, M.N., Alonso, N., Garcia-Mera, X., Caamano, O., Romero-Duran, F.J., Yanez, M., Gonzalez-Diaz, H., TOPSMODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases (2013) Bioorg. Med. Chem., 21 (7), pp. 1870-1879Alonso, N., Caamano, O., Romero-Duran, F.J., Luan, F., Dias Soeiro Cordeiro, M.N., Yanez, M., Gonzalez-Diaz, H., Garcia-Mera, X., Model for High-Throughput Screening of Multi-Target Drugs in Chemical NeurosciencesSynthesis, Assay and Theoretic Study of Rasagiline Carbamates (2013) ACS Chem. Neurosci., 4 (10), pp. 1393-1403Concu, R., Dea-Ayuela, M.A., Perez-Montoto, L.G., Prado-Prado, F.J., Uriarte, E., Bolas-Fernandez, F., Podda, G., Gonzalez-Diaz, H., 3D entropy and moments prediction of enzyme classes and experimental-theoretic study of peptide fingerprints in Leishmania parasites (2009) Biochim. Biophys. Acta, 1794 (12), pp. 1784-1794Speck-Planche, A., Kleandrova, V.V., Luan, F., Cordeiro, M.N., Multi-target drug discovery in anti-cancer therapy: Fragment-based approach toward the design of potent and versatile anti-prostate cancer agents (2011) Bioorg. Med. Chem., 19 (21), pp. 6239-6244Tenorio-Borroto, E., Penuelas Rivas, C.G., Vasquez Chagoyan, J.C., Castanedo, N., Prado-Prado, F.J., Garcia-Mera, X., Gonzalez-Diaz, H., ANN multiplexing model of drugs effect on macrophagestheoretical and flow cytometry study on the cytotoxicity of the antimicrobial drug G1 in spleen (2012) Bioorg. Med. Chem., 20 (20), pp. 6181-6194Hill, T., Lewicki, P., STATISTICS Methodsand Applications. A Comprehensive Reference for Science, Industry and Data Mining. StatSoft (2006) Tulsa, 1, p. 813(2002) STATISTICA (Data Analysis Software System), Version 6.0, , www.statsoft.com.Statsoft, StatSoft.Inc. , Inc., 6.0Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., Atom, atomtype and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic (2005) Bioorg. Med. Chem., 13 (4), pp. 1005-1020Marrero-Ponce, Y., Machado-Tugores, Y., Pereira, D.M., Escario, J.A., Barrio, A.G., Nogal-Ruiz, J.J., Ochoa, C., Meneses-Marcel, A., A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices (2005) Curr. Drug Discov. Technol., 2 (4), pp. 245-265Gerets, H.H., Dhalluin, S., Atienzar, F.A., Multiplexing cell viability assays (2011) Methods Mol. Biol., 740, pp. 91-101García-Domenech, R., Zanni, R., Galvez-Llompart, M., De Julián- Ortiz, J.V., Modeling anti-allergic natural compounds by molecular topology (2013) Comb. Chem. High Throughput Screen, 16 (8), pp. 628-635Subramaniam, S., Mehrotra, M., Gupta, D., Support Vector Machine Based Prediction of P. Falciparum Proteasome Inhibitors and Development of Focused Library by Molecular Docking (2011) Comb. Chem. High Throughput Screen, 14 (10), pp. 898-907http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8989/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8989oai:repositorio.utb.edu.co:20.500.12585/89892023-05-25 15:19:45.637Repositorio Institucional UTBrepositorioutb@utb.edu.co |