SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera

En este manuscrito presentamos una aplicación web con soporte en lenguaje de programación PYTHON, REACTJS y JAVASCRIPT, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes...

Full description

Autores:
Sierra Porta, David
Herrera Acevedo, Daniel
Tarazona-Alvarado, Miguel
Hernández Díaz, Yaleidys
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
spa
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12483
Acceso en línea:
https://hdl.handle.net/20.500.12585/12483
Palabra clave:
Rotación diferencial del sol
Manchas solares
Divulgación científica
Ciencia de datos
Differential Sun’s rotation
Sunspots
Scientific outreach
Data science
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_93ebce16377eb1408e05cb2299efeb2b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12483
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
title SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
spellingShingle SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
Rotación diferencial del sol
Manchas solares
Divulgación científica
Ciencia de datos
Differential Sun’s rotation
Sunspots
Scientific outreach
Data science
LEMB
title_short SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
title_full SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
title_fullStr SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
title_full_unstemmed SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
title_sort SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera
dc.creator.fl_str_mv Sierra Porta, David
Herrera Acevedo, Daniel
Tarazona-Alvarado, Miguel
Hernández Díaz, Yaleidys
dc.contributor.author.none.fl_str_mv Sierra Porta, David
Herrera Acevedo, Daniel
Tarazona-Alvarado, Miguel
Hernández Díaz, Yaleidys
dc.subject.keywords.spa.fl_str_mv Rotación diferencial del sol
Manchas solares
Divulgación científica
Ciencia de datos
Differential Sun’s rotation
Sunspots
Scientific outreach
Data science
topic Rotación diferencial del sol
Manchas solares
Divulgación científica
Ciencia de datos
Differential Sun’s rotation
Sunspots
Scientific outreach
Data science
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description En este manuscrito presentamos una aplicación web con soporte en lenguaje de programación PYTHON, REACTJS y JAVASCRIPT, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y publicó en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-12T12:05:57Z
dc.date.available.none.fl_str_mv 2023-09-12T12:05:57Z
dc.date.issued.none.fl_str_mv 2023-04-22
dc.date.submitted.none.fl_str_mv 2023-09-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Porta, D. S., Acevedo, D. H., Tarazona-Alvarado, M., & Díaz, Y. H. (2023). SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera. Revista Mexicana de Física E, 20(2 Jul-Dec), 020208-1.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12483
dc.identifier.doi.none.fl_str_mv 10.31349/RevMexFis.20.020208
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Porta, D. S., Acevedo, D. H., Tarazona-Alvarado, M., & Díaz, Y. H. (2023). SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera. Revista Mexicana de Física E, 20(2 Jul-Dec), 020208-1.
10.31349/RevMexFis.20.020208
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12483
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Revista Mexicana de Física E
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/1/document%20%282%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/4/document%20%282%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/5/document%20%282%29.pdf.jpg
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
47bdf5b67b6d7a19e6d17c7e40b63c55
e20ad307a1c5f3f25af9304a7a7c86b6
30bc3b62e66f874ba8a76730f769b713
daf3c3d119862c75c21016ffd77ff569
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397597153427456
spelling Sierra Porta, David62fe46fe-2160-4eac-8b0c-89e7fd6ce293Herrera Acevedo, Daniel2f2e14ba-6e9b-4697-a7f7-312414a61c76Tarazona-Alvarado, Miguelef024c8f-0c62-47e6-90e1-9de2e2566b23Hernández Díaz, Yaleidys40e1af31-e516-47da-8ab4-2e14add4bc25Colombia2023-09-12T12:05:57Z2023-09-12T12:05:57Z2023-04-222023-09-11Porta, D. S., Acevedo, D. H., Tarazona-Alvarado, M., & Díaz, Y. H. (2023). SunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosfera. Revista Mexicana de Física E, 20(2 Jul-Dec), 020208-1.https://hdl.handle.net/20.500.12585/1248310.31349/RevMexFis.20.020208Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarEn este manuscrito presentamos una aplicación web con soporte en lenguaje de programación PYTHON, REACTJS y JAVASCRIPT, libre y abierta, para el desarrollo de una actividad de enseñanza-aprendizaje de la astronomía, específicamente para el cálculo de la rotación diferencial del Sol para estudiantes y publicó en general en edad escolar entre 10 y 18 años. El propósito fundamental es la de difundir el conocimiento del Sol y algunas de sus propiedades. La aplicación web es autocontenida y con suficiente guía y ayuda para que cualquiera pueda usarla, además de su dinamismo y diseño innovador, pretende presentar estrategias agradables para la enseñanza y aprendizaje de la ciencia en torno al Sol.In this manuscript we present a web application with support in PYTHON, REACTJS and JAVASCRIPT programming language, free and open, for the development of a teaching-learning activity of astronomy, specifically for the calculation of the differential rotation of the Sun for students and general public in school age between 10 and 18 years old. The main purpose is to spread the knowledge of the Sun and some of its properties. The web application is self-contained and with enough guidance and help for anyone to use it, in addition to its dynamism and innovative design, it aims to present pleasant strategies for teaching and learning science around the Sun.12 páginasapplication/pdfspahttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Revista Mexicana de Física ESunspotCalc: Una aplicación basada en Web y Python para calcular la rotación diferencial del sol y su fotosferainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Rotación diferencial del solManchas solaresDivulgación científicaCiencia de datosDifferential Sun’s rotationSunspotsScientific outreachData scienceLEMBCartagena de IndiasPúblico generalT. Wiegelmann, J. K. Thalmann, and S. K. Solanki, The magnetic field in the solar atmosphere, The Astronomy and Astrophysics Review 22 (2014) 1, https://doi.org/10.1007/ s00159-014-0078-7.M. Georgoulis et al., Solar magnetic helicity injected into the heliosphere: magnitude, balance, and periodicities over solar cycle 23, The Astrophysical Journal 705 (2009) L48, https: //doi.org/10.1088/0004-637X/705/1/L48. P. Demoulin and E. Pariat, Modelling and observations of ´ photospheric magnetic helicity, Advances in Space Research 43 (2009) 1013, https://doi.org/10.1016/j.asr. 2008.12.004.H. Moradi et al., Modeling the subsurface structure of sunspots, Solar Physics 267 (2010) 1, https://doi.org/10. 1007/s11207-010-9630-4.. J. H. Thomas and N. O. Weiss, The theory of sunspots, Sunspots: Theory and Observations (1992) 3, https://doi. org/10.1007/978-94-011-2769-1 1.. G. E. Hale, Solar vortices (contributions from the Mt. Wilson Solar Observatory, no. 26), Astrophysical Journal, 28 (1908) 100G. E. Hale, Preliminary results of an attempt to detect the general magnetic field of the Sun, The Astrophysical Journal 38 (1913) 27R. F. Stein, Solar surface magneto-convection, Living Reviews in Solar Physics 9 (2012) 1, https://doi.org/10. 12942/lrsp-2012-4.A. Vogler ¨ et al., Simulations of magneto-convection in the solar photosphere-Equations, methods, and results of the MURaM code, Astronomy & Astrophysics 429 (2005) 335, https: //doi.org/10.1051/0004-6361:20041507.. S. K. Solanki, Sunspots: An overview., Astronomy & Astrophysics Review 11 (2003) 4, https://doi.org/10.1007/ s00159-003-0018-4.M. Stix, The Sun’s differential rotation, In Reviews in Modern Astronomy 2 (Springer, 1989) pp. 248-266, https://doi. org/10.1007/978-3-642-75183-7 23. R. Arlt and J. M. Vaquero, Historical sunspot records, Living Reviews in Solar Physics 17 (2020) 1, https://doi.org/ 10.1007/s41116-020-0023-y.K. L. Harvey, The cyclic behavior of solar activity, In The solar cycle, 27 (1992) 335D. Sierra-Porta, Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23, Astrophysics and Space Science 363 (2018) 1, https: //doi.org/10.1007/s10509-018-3360-8D. Sierra-Porta, On the fractal properties of cosmic rays and Sun dynamics cross-correlations, Astrophysics and Space Science 367 (2022) 1, https://doi.org/10.1007/ s10509-022-04151-5.6. D. Sierra-Porta, M. Tarazona-Alvarado, and J. Villalba- Acebedo, Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling, Advances in Space Research (2023), https://doi.org/10. 1016/j.asr.2023.02.044.I. Sammis, F. Tang, and H. Zirin, The dependence of large flare occurrence on the magnetic structure of sunspots, The Astrophysical Journal 540 (2000) 583, https://doi.org/ 10.1086/309303.J. M. Borrero and K. Ichimoto, Magnetic structure of sunspots, Living Reviews in Solar Physics 8 (2011) 1, https: //doi.org/10.12942/lrsp-2011-4.S. Tomczyk and E. Landi, Upgraded coronal multi-channel polarimeter (UCoMP), Solar Heliospheric and INterplanetary Environment (SHINE 2019) (2019) 131S. Tomczyk et al., First Images from the Upgraded Coronal Multi-channel Polarimeter (UCoMP), In AGU Fall Meeting Abstracts, 2021 (2021) 2089.M. P. Rast et al., Critical science plan for the Daniel K. Inouye solar telescope (DKIST), Solar Physics 296 (2021) 1, https: //doi.org/10.1007/s11207-021-01789-2.F. Woger ¨ et al., The Daniel K. Inouye Solar Telescope (DKIST)/Visible Broadband Imager (VBI), Solar Physics 296 (2021) 1, https://doi.org/10.1007/ s11207-021-01881-7. C. Rao, et al., 1.8-m solar telescope in China: Chinese large solar telescope, Journal of Astronomical Telescopes, Instruments, and Systems 1 (2015) 024001, https://doi.org/ 10.1117/1.JATIS.1.2.024001.R. Volkmer, et al., GREGOR: the new 1.5-m solar telescope on Tenerife, In Innovative Telescopes and Instrumentation for Solar Astrophysics, 4853 (2003) 60, https://doi.org/10. 1117/12.471367.O. Von Der Luhe, ¨ et al., GREGOR: a 1.5 m telescope for solar research, Astronomische Nachrichten: Astronomical Notes 4853 (2001) 353, https: //doi.org/10.1002/1521-3994(200112)322: 5/6%3C353::AID-ASNA353%3E3.0.CO;2-Z.Y. Yan et al., The Chinese spectral radioheliograph-CSRH, Earth, Moon, and Planets 104 (2009) 97, https://doi. org/10.1007/s11038-008-9254-y.W. Wang et al., Calibration and data processing for a Chinese Spectral Radioheliograph in the decimeterwave range, Publications of the Astronomical Society of Japan 65 (2013), https://doi.org/10.1093/pasj/65.sp1.S18.A. Valio et al., POlarization Emission of Millimeter Activity at the Sun (POEMAS): new circular polarization solar telescopes at two millimeter wavelength ranges, Solar Physics 283 (2013) 651, https://doi.org/10.1007/ s11207-013-0237-4.T. J. Schmit et al., Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R, Journal of Applied Remote Sensing 7 (2013) 073462, https://doi.org/10.1117/1.JRS.7.073462.B. K. Dichter et al., Specification, design, and calibration of the space weather suite of instruments on the NOAA GOESR program spacecraft, IEEE Transactions on Nuclear Science 62 (2015) 2776, https:77doi.org/10.1109/TNS. 20152477997.K. Paularena and J. King, NASA’s IMP 8 spacecraft, In Interball in the ISTP Program, pp. 145-154, (Springer, 1999), https: //doi.org/10.1007/978-94-011-4487-2 11.V. Domingo, B. Fleck, and A. Poland, The scientific payload of the space-based Solar and Heliospheric Observatory (SOHO), Space Science Reviews 70 (1994) 7, https://doi. org/10.1007/BF00777835. V. Domingo, B. Fleck, and A. Poland, SOHO: the solar and heliospheric observatory, Space Science Reviews 72 (1995) 81, https://doi.org/10.1007/BF00768758D. Muller ¨ et al., The solar orbiter mission-science overview, Astronomy & Astrophysics 642 (2020) A1, https://doi. org/10.1051/0004-6361/202038467.A. W. Case et al., The solar probe cup on the Parker Solar Probe, The Astrophysical Journal Supplement Series 246 (2020) 43, https://doi.org/10.3847/1538-4365/ ab5a7b.J. Halekas, et al., Electrons in the young solar wind: First results from the parker solar probe, The Astrophysical Journal Supplement Series 246 (2020) 22, https://doi.org/10. 3847/1538-4365/ab4cec.T. J. Immel, et al., The ionospheric connection explorer mission: Mission goals and design, Space Science Reviews 214 (2018) 1, https://doi.org/10.1007/ s11214-017-0449-2.R. Howard, P. Gilman, and P. Gilman, Rotation of the sun measured from Mount Wilson white-light images, The Astrophysical Journal 283 (1984) 373.E. Schroter, The solar differential rotation: present status of ob- ¨ servations, Solar Physics 100 (1985) 141.J. G. Beck, A comparison of differential rotation measurements-(Invited Review), Solar physics 191 (2000) 47, https://doi.org/10.1023/A:1005226402796P. Scherrer, J. Wilcox, and L. Svalgaard, Rotation of the sun: observations at Stanford, Astrophys. J.; (United States) 241 (1980)R. Howard, J. E. Boyden, and B. J. Labonte, Solar rotation measurements at Mount Wilson: I. Analysis and instrumental effects, Solar Physics 66 (1980) 167.R. K. Ulrich et al., Solar rotation measurements at MountWilson: V. Reanalysis of 21 years of data, Solar Physics 117 (1988) 291.. J. Beck, T. Duvall Jr, and P. Scherrer, Long-lived giant cells detected at the surface of the Sun, Nature 394 (1998) 653.R. Ulrich, Identification of very large scale velocity structures on the solar surface using Mt Wilson synoptic observations, In Structure and Dynamics of the Interior of the Sun and Sun-like Stars, 418 (1998) 851.. D. A. Lamb, Measurements of solar differential rotation and meridional circulation from tracking of photospheric magnetic features, The Astrophysical Journal 836 (2017) 10, https: //doi.org/10.3847/1538-4357/836/1/10.B. Shneiderman, Science 2.0, Science 319 (2008) 1349T. Bucheler and J. H. Sieg, Understanding science 2.0: Crowd- ¨ sourcing and open innovation in the scientific method, Procedia Computer Science 7 (2011) 327, https://doi.org/10. 1016/j.procs.2011.09.014.. R. Bonney et al., Can citizen science enhance public understanding of science?, Public understanding of science 25 (2016) 2, https://doi.org/10.1177/0963662515607406.J. P. Cohn, Citizen science: Can volunteers do real research?, BioScience 58 (2008) 192, https://doi.org/10.1641/ B580303.P. J. Marshall, C. J. Lintott, and L. N. Fletcher, Ideas for citizen science in astronomy, Annual Review of Astronomy and Astrophysics 53 (2015) 247.The SunPy Community et al., The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package, The Astrophysical Journal 890 (2020) 68, https://doi.org/ 10.3847/1538-4357/ab4f7a.. J. Meeus, Astronomical algorithms, Richmond, VA:WillmannBell (1998).C. Rao et al., First light of the 1.8-m solar telescopeCLST (2020), https://doi.org/10.1007/ s11433-019-1557-3.http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALdocument (2).pdfdocument (2).pdfapplication/pdf1123475https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/1/document%20%282%29.pdf47bdf5b67b6d7a19e6d17c7e40b63c55MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTdocument (2).pdf.txtdocument (2).pdf.txtExtracted texttext/plain58662https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/4/document%20%282%29.pdf.txt30bc3b62e66f874ba8a76730f769b713MD54THUMBNAILdocument (2).pdf.jpgdocument (2).pdf.jpgGenerated Thumbnailimage/jpeg9183https://repositorio.utb.edu.co/bitstream/20.500.12585/12483/5/document%20%282%29.pdf.jpgdaf3c3d119862c75c21016ffd77ff569MD5520.500.12585/12483oai:repositorio.utb.edu.co:20.500.12585/124832023-09-13 00:17:53.827Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=