Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
The problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the d...
- Autores:
-
Montoya Giraldo, Oscar Danilo
Garrido Arévalo, Víctor Manuel
Grisales-Noreña, Luis Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10619
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10619
- Palabra clave:
- Mathematical model
Optimal Power
Direct-Current Networks
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_9370112959936d05973d85b14a263c31 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10619 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
title |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
spellingShingle |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads Mathematical model Optimal Power Direct-Current Networks |
title_short |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
title_full |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
title_fullStr |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
title_full_unstemmed |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
title_sort |
Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads |
dc.creator.fl_str_mv |
Montoya Giraldo, Oscar Danilo Garrido Arévalo, Víctor Manuel Grisales-Noreña, Luis Fernando |
dc.contributor.author.none.fl_str_mv |
Montoya Giraldo, Oscar Danilo Garrido Arévalo, Víctor Manuel Grisales-Noreña, Luis Fernando |
dc.subject.keywords.spa.fl_str_mv |
Mathematical model Optimal Power Direct-Current Networks |
topic |
Mathematical model Optimal Power Direct-Current Networks |
description |
The problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the dispersed is solved in the master optimization stage through the application of the vortex-search algorithm. Each combination of the power outputs at the dispersed generation sources is provided to a power flow methodology known as the hyperbolic power flow approach for direct current networks. The main advantage of the proposed optimization method corresponds to the possibility of solving a complex nonlinear programming problem via sequential quadratic programming, which can be easily implemented at any programming language with low computational effort and high-quality results. The computational tests of the master-slave optimization proposal are evaluated in a 21-bus system, and the numerical results are compared with the implementation of the exact nonlinear programming model in the General Algebraic Modeling System (i.e., GAMS). All the computational results are conducted through the MATLAB programming environment licensed by Universidad Tecnologica de Pereira for academic usage |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-10 |
dc.date.accessioned.none.fl_str_mv |
2022-03-14T20:54:44Z |
dc.date.available.none.fl_str_mv |
2022-03-14T20:54:44Z |
dc.date.submitted.none.fl_str_mv |
2022-03-11 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10619 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/2135/1/012009 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009. 10.1088/1742-6596/2135/1/012009 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10619 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
7 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series - Vol. 2135 (2021). |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpg |
bitstream.checksum.fl_str_mv |
275318ef19d67df24887d1585e8884bf 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 117e5d9e77208296122900728e54f9fa 641749e6bb2681b164e242bf800f1404 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021627466219520 |
spelling |
Montoya Giraldo, Oscar Daniloc66dce06-2f1b-4a61-9631-60e8f37e8432Garrido Arévalo, Víctor Manuel2fcf247d-e28e-412e-b524-46d2e531564cGrisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d12022-03-14T20:54:44Z2022-03-14T20:54:44Z2021-12-102022-03-11Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009.https://hdl.handle.net/20.500.12585/1061910.1088/1742-6596/2135/1/012009Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the dispersed is solved in the master optimization stage through the application of the vortex-search algorithm. Each combination of the power outputs at the dispersed generation sources is provided to a power flow methodology known as the hyperbolic power flow approach for direct current networks. The main advantage of the proposed optimization method corresponds to the possibility of solving a complex nonlinear programming problem via sequential quadratic programming, which can be easily implemented at any programming language with low computational effort and high-quality results. The computational tests of the master-slave optimization proposal are evaluated in a 21-bus system, and the numerical results are compared with the implementation of the exact nonlinear programming model in the General Algebraic Modeling System (i.e., GAMS). All the computational results are conducted through the MATLAB programming environment licensed by Universidad Tecnologica de Pereira for academic usage7 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series - Vol. 2135 (2021).Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loadsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Mathematical modelOptimal PowerDirect-Current NetworksCartagena de IndiasMontoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal Power Dispatch of DGs in DC Power Grids: a ˜ Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems, 13(13) pp 335–346Patterson M, Macia N F, and Kannan A M 2015 Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications. IEEE Transactions on Energy Conversion, 30(1) pp 359–366Ellabban O, Abu-Rub H, and Blaabjerg F 2014 Renewable energy resources: Current status, future prospects and their enabling technology. Renewable Sustainable Energy Rev., 39 pp 748–764.Parhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review. IEEE Access, 3 pp 890–925..Garces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res., 151(Supplement C) pp 149–153.Li J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5496–5506.Garces A 2018 On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5770–5777.] Montoya O D, Gil-Gonzalez W, and Garces A 2019 Optimal Power Flow on DC Microgrids: A Quadratic Convex ´ Approximation. IEEE Trans. Circuits Syst. II, 66(6) pp 1018–1022Simpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8) pp 811–815Velasquez O S, Montoya O D, Garrido-Arevalo V M, and Grisales-Norena L F 2019 Optimal Power Flow in Direct- ˜ Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering, 17(1) pp 24–32Aydin O, Tezcan S S, Eke I, and Taplamacioglu M C 2017 Solving the Optimal Power Flow Quadratic Cost Functions using Vortex Search Algorithm. IFAC-PapersOnLine, 50(1) pp 239–244 20th IFAC World Congress.Montoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power Flow Analysis in DC Grids: Two ˜ Alternative Numerical Methods. IEEE Trans. Circuits Syst. II, pp 1–5.Montoya O D, Gil-Gonzalez W, and Garces A 2019 Sequential quadratic programming models for solving the OPF ´ problem in DC grids. Electr. Power Syst. Res., 169 pp 18–23.Dogan B and Olmez T 2015 Vortex search algorithm for the analog active filter component selection problem. AEU - International Journal of Electronics and Communications, 69(9) pp 1243–1253.GAMS Development Corp. GAMS free demo version [Online:] https://www.gams.com/http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdfMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdfapplication/pdf431615https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf275318ef19d67df24887d1585e8884bfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txtMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txtExtracted texttext/plain20815https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txt117e5d9e77208296122900728e54f9faMD54THUMBNAILMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpgMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpgGenerated Thumbnailimage/jpeg39619https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpg641749e6bb2681b164e242bf800f1404MD5520.500.12585/10619oai:repositorio.utb.edu.co:20.500.12585/106192023-05-26 10:06:21.049Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |