Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads

The problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the d...

Full description

Autores:
Montoya Giraldo, Oscar Danilo
Garrido Arévalo, Víctor Manuel
Grisales-Noreña, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10619
Acceso en línea:
https://hdl.handle.net/20.500.12585/10619
Palabra clave:
Mathematical model
Optimal Power
Direct-Current Networks
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9370112959936d05973d85b14a263c31
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10619
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
title Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
spellingShingle Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
Mathematical model
Optimal Power
Direct-Current Networks
title_short Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
title_full Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
title_fullStr Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
title_full_unstemmed Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
title_sort Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads
dc.creator.fl_str_mv Montoya Giraldo, Oscar Danilo
Garrido Arévalo, Víctor Manuel
Grisales-Noreña, Luis Fernando
dc.contributor.author.none.fl_str_mv Montoya Giraldo, Oscar Danilo
Garrido Arévalo, Víctor Manuel
Grisales-Noreña, Luis Fernando
dc.subject.keywords.spa.fl_str_mv Mathematical model
Optimal Power
Direct-Current Networks
topic Mathematical model
Optimal Power
Direct-Current Networks
description The problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the dispersed is solved in the master optimization stage through the application of the vortex-search algorithm. Each combination of the power outputs at the dispersed generation sources is provided to a power flow methodology known as the hyperbolic power flow approach for direct current networks. The main advantage of the proposed optimization method corresponds to the possibility of solving a complex nonlinear programming problem via sequential quadratic programming, which can be easily implemented at any programming language with low computational effort and high-quality results. The computational tests of the master-slave optimization proposal are evaluated in a 21-bus system, and the numerical results are compared with the implementation of the exact nonlinear programming model in the General Algebraic Modeling System (i.e., GAMS). All the computational results are conducted through the MATLAB programming environment licensed by Universidad Tecnologica de Pereira for academic usage
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-10
dc.date.accessioned.none.fl_str_mv 2022-03-14T20:54:44Z
dc.date.available.none.fl_str_mv 2022-03-14T20:54:44Z
dc.date.submitted.none.fl_str_mv 2022-03-11
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10619
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/2135/1/012009
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009.
10.1088/1742-6596/2135/1/012009
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10619
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 7 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series - Vol. 2135 (2021).
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpg
bitstream.checksum.fl_str_mv 275318ef19d67df24887d1585e8884bf
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
117e5d9e77208296122900728e54f9fa
641749e6bb2681b164e242bf800f1404
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021627466219520
spelling Montoya Giraldo, Oscar Daniloc66dce06-2f1b-4a61-9631-60e8f37e8432Garrido Arévalo, Víctor Manuel2fcf247d-e28e-412e-b524-46d2e531564cGrisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d12022-03-14T20:54:44Z2022-03-14T20:54:44Z2021-12-102022-03-11Montoya Giraldo, Oscar & Garrido, Victor & Grisales-Noreña, Luis. (2021). Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loads. Journal of Physics: Conference Series. 2135. 012009. 10.1088/1742-6596/2135/1/012009.https://hdl.handle.net/20.500.12585/1061910.1088/1742-6596/2135/1/012009Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of the optimal power dispatch of dispersed generators in direct-current networks under the presence of nonlinear loads (constant power terminals) is addressed through a combinatorial optimization strategy by using a master-slave solution methodology. The optimal power generation in the dispersed is solved in the master optimization stage through the application of the vortex-search algorithm. Each combination of the power outputs at the dispersed generation sources is provided to a power flow methodology known as the hyperbolic power flow approach for direct current networks. The main advantage of the proposed optimization method corresponds to the possibility of solving a complex nonlinear programming problem via sequential quadratic programming, which can be easily implemented at any programming language with low computational effort and high-quality results. The computational tests of the master-slave optimization proposal are evaluated in a 21-bus system, and the numerical results are compared with the implementation of the exact nonlinear programming model in the General Algebraic Modeling System (i.e., GAMS). All the computational results are conducted through the MATLAB programming environment licensed by Universidad Tecnologica de Pereira for academic usage7 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series - Vol. 2135 (2021).Optimal Power Dispatch of Dispersed Sources in Direct-Current Networks with Nonlinear Loadsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Mathematical modelOptimal PowerDirect-Current NetworksCartagena de IndiasMontoya O D, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2018 Optimal Power Dispatch of DGs in DC Power Grids: a ˜ Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the OPF Problem. WSEAS Transactions on Power Systems, 13(13) pp 335–346Patterson M, Macia N F, and Kannan A M 2015 Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications. IEEE Transactions on Energy Conversion, 30(1) pp 359–366Ellabban O, Abu-Rub H, and Blaabjerg F 2014 Renewable energy resources: Current status, future prospects and their enabling technology. Renewable Sustainable Energy Rev., 39 pp 748–764.Parhizi S, Lotfi H, Khodaei A, and Bahramirad S 2015 State of the art in research on microgrids: A review. IEEE Access, 3 pp 890–925..Garces A 2017 Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res., 151(Supplement C) pp 149–153.Li J, Liu F, Wang Z, Low S H, and Mei S 2018 Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5496–5506.Garces A 2018 On Convergence of Newtons Method in Power Flow Study for DC Microgrids. IEEE Trans. Power Syst., 33(5) pp 5770–5777.] Montoya O D, Gil-Gonzalez W, and Garces A 2019 Optimal Power Flow on DC Microgrids: A Quadratic Convex ´ Approximation. IEEE Trans. Circuits Syst. II, 66(6) pp 1018–1022Simpson-Porco J W, Dorfler F, and Bullo F 2015 On resistive networks of constant-power devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(8) pp 811–815Velasquez O S, Montoya O D, Garrido-Arevalo V M, and Grisales-Norena L F 2019 Optimal Power Flow in Direct- ˜ Current Power Grids via Black Hole Optimization. Advances in Electrical and Electronic Engineering, 17(1) pp 24–32Aydin O, Tezcan S S, Eke I, and Taplamacioglu M C 2017 Solving the Optimal Power Flow Quadratic Cost Functions using Vortex Search Algorithm. IFAC-PapersOnLine, 50(1) pp 239–244 20th IFAC World Congress.Montoya O D, Garrido V M, Gil-Gonzalez W, and Grisales-Nore ´ na L F 2019 Power Flow Analysis in DC Grids: Two ˜ Alternative Numerical Methods. IEEE Trans. Circuits Syst. II, pp 1–5.Montoya O D, Gil-Gonzalez W, and Garces A 2019 Sequential quadratic programming models for solving the OPF ´ problem in DC grids. Electr. Power Syst. Res., 169 pp 18–23.Dogan B and Olmez T 2015 Vortex search algorithm for the analog active filter component selection problem. AEU - International Journal of Electronics and Communications, 69(9) pp 1243–1253.GAMS Development Corp. GAMS free demo version [Online:] https://www.gams.com/http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdfMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdfapplication/pdf431615https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf275318ef19d67df24887d1585e8884bfMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txtMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txtExtracted texttext/plain20815https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.txt117e5d9e77208296122900728e54f9faMD54THUMBNAILMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpgMontoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpgGenerated Thumbnailimage/jpeg39619https://repositorio.utb.edu.co/bitstream/20.500.12585/10619/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012009.pdf.jpg641749e6bb2681b164e242bf800f1404MD5520.500.12585/10619oai:repositorio.utb.edu.co:20.500.12585/106192023-05-26 10:06:21.049Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=