Exact relativistic models of thin disks around static black holes in a magnetic field

The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other finite based on the first Morgan-Morgan disk. We also analyze a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9067
Acceso en línea:
https://hdl.handle.net/20.500.12585/9067
Palabra clave:
Einstein Maxwell equations
exact solution
General relativity
Thin disks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_93369543699130baef2d51efa37f51fd
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9067
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Exact relativistic models of thin disks around static black holes in a magnetic field
title Exact relativistic models of thin disks around static black holes in a magnetic field
spellingShingle Exact relativistic models of thin disks around static black holes in a magnetic field
Einstein Maxwell equations
exact solution
General relativity
Thin disks
title_short Exact relativistic models of thin disks around static black holes in a magnetic field
title_full Exact relativistic models of thin disks around static black holes in a magnetic field
title_fullStr Exact relativistic models of thin disks around static black holes in a magnetic field
title_full_unstemmed Exact relativistic models of thin disks around static black holes in a magnetic field
title_sort Exact relativistic models of thin disks around static black holes in a magnetic field
dc.subject.keywords.none.fl_str_mv Einstein Maxwell equations
exact solution
General relativity
Thin disks
topic Einstein Maxwell equations
exact solution
General relativity
Thin disks
description The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other finite based on the first Morgan-Morgan disk. We also analyze a simple model of active galactic nuclei (AGN) consisting of black hole, a Kuzmin-Chazy-Curzon disk and two rods representing jets, in presence of magnetic field. To explain the stability of the disks, we consider the matter of the disk made of two pressureless streams of counter-rotating charged particles (counter-rotating model) moving along electrogeodesic. Using the Rayleigh criterion, we derivate for circular orbits the stability conditions of the particles of the streams. The influence of the magnetic field on the matter properties of the disk and on its stability are also analyzed. © World Scientific Publishing Company.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:52Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:52Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv International Journal of Modern Physics D; Vol. 23, Núm. 1
dc.identifier.issn.none.fl_str_mv 02182718
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9067
dc.identifier.doi.none.fl_str_mv 10.1142/S0218271814500102
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 25225467000
6506373811
7202571265
identifier_str_mv International Journal of Modern Physics D; Vol. 23, Núm. 1
02182718
10.1142/S0218271814500102
Universidad Tecnológica de Bolívar
Repositorio UTB
25225467000
6506373811
7202571265
url https://hdl.handle.net/20.500.12585/9067
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84891886579&doi=10.1142%2fS0218271814500102&partnerID=40&md5=2fcd66b5491b05f312977525547c9ead
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9067/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021775291318272
spelling 2020-03-26T16:32:52Z2020-03-26T16:32:52Z2014International Journal of Modern Physics D; Vol. 23, Núm. 102182718https://hdl.handle.net/20.500.12585/906710.1142/S0218271814500102Universidad Tecnológica de BolívarRepositorio UTB2522546700065063738117202571265The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other finite based on the first Morgan-Morgan disk. We also analyze a simple model of active galactic nuclei (AGN) consisting of black hole, a Kuzmin-Chazy-Curzon disk and two rods representing jets, in presence of magnetic field. To explain the stability of the disks, we consider the matter of the disk made of two pressureless streams of counter-rotating charged particles (counter-rotating model) moving along electrogeodesic. Using the Rayleigh criterion, we derivate for circular orbits the stability conditions of the particles of the streams. The influence of the magnetic field on the matter properties of the disk and on its stability are also analyzed. © World Scientific Publishing Company.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84891886579&doi=10.1142%2fS0218271814500102&partnerID=40&md5=2fcd66b5491b05f312977525547c9eadExact relativistic models of thin disks around static black holes in a magnetic fieldinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Einstein Maxwell equationsexact solutionGeneral relativityThin disksGutiérrez-Piñeres A.C.García-Reyes G.González G.A.Kundt, W., (1996) Jets from Stars and Galactic Nuclei, Lecture Notes in Physics, 471. , (ed.) SpringerKrolik, J.H., (1999) Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, , Princeton University Press Princeton New JerseyBlandford, R.D., (2001) Prog. Theor. Phys. Supp., 143, p. 182Blandford, R.D., Znajek, R.L., (1977) Mon. Not. R. Astron. Soc., 179, p. 433Zakharov, A.F., Kardashev, N.S., Lukash, V.N., Repin, S.V., (2003) Mon. Not. R. Astron. Soc., 342, p. 1325N. A. Silant'ev, Yu. N. Gnedin, S. D. Buliga, M. Yu. Piotrovich and T. M. Natsvlishvili, arXiv:1203.2763v1Liu, Y.T., Shapiro, S.L., Stephens, B.C., (2007) Phys. Rev. D, 76, p. 084017Akiyama, S., (2003) Astrophys. J., 584, p. 954Vlemmings, W.H.T., Diamond, P.J., Imai, H., (2006) Nature, 440, p. 58Meier, D.L., Koide, S., Uchida, Y., (2001) Science, 291, p. 84Ustyugova, G.V., (1999) Astrophys. J., 516, p. 221Krasnopolsky, R., Li, Z.Y., Blandford, R.D., (2003) Astrophys. J., 595, p. 631Bonnor, W.A., Sackfield, A., (1968) Commun. Math. Phys., 8, p. 338Morgan, T., Morgan, L., (1969) Phys. Rev., 183, p. 1097Morgan, L., Morgan, T., (1970) Phys. Rev. D, 2, p. 2756Lynden-Bell, D., Pineault, S., (1978) Mon. Not. R. Astron. Soc., 185, p. 679Chamorro, A., Gregory, R., Stewart, J.M., (1987) Proc. R. Soc. Lond. A, 413, p. 251Letelier, P.S., Oliveira, S.R., (1987) J. Math. Phys., 28, p. 165Lemos, J.P.S., (1989) Class. Quantum Grav., 6, p. 1219Bićak, J., Lynden-Bell, D., Katz, J., (1993) Phys. Rev. D, 47, p. 4334Bićak, J., Lynden-Bell, D., Pichon, C., (1993) Mon. Not. R. Astron. Soc., 265, p. 126Gonźalez, G.A., Espitia, O.A., (2003) Phys. Rev. D, 68, p. 104028Bićak, J., Ledvinka, T., (1993) Phys. Rev. Lett., 71, p. 1669Gonźalez, G.A., Letelier, P.S., (2000) Phys. Rev. D, 62, p. 064025Lemos, J.P.S., Letelier, P.S., (1993) Class. Quantum Grav., 10, p. 75Lemos, J.P.S., Letelier, P.S., (1994) Phys. Rev. D, 49, p. 5135Vogt, D., Letelier, P.S., (2005) Phys. Rev. D, 71, p. 044009Ledvinka, T., Bićak, J., Zofka, M., (1999) Proc. 8th Marcel-Grossmann Meeting in General Relativity, , ed. T. Piran (World Scientific, SingaporeKatz, J., Bićak, J., Lynden-Bell, D., (1999) Class. Quantum Grav., 16, p. 4023Letelier, P.S., (1999) Phys. Rev. D, 60, p. 104042Garća-Reyes, G., Gonźalez, G.A., (2004) Phys. Rev. D, 69, p. 124002Garća-Duque, C.H., Garća-Reyes, G., (2011) Gen. Relativ. Gravit., 43, p. 3001Gutíerrez-Pineres, A.C., Gonźalez, G.A., (2012) Int. J. Theor. Phys., 43, p. 1737Gurlebeck, N., Bićak, J., Gutíerrez-Pineres, A.C., (2011) Phys. Rev. D, 83, p. 124023Gurlebeck, N., Bićak, J., Gutíerrez-Pineres, A.C., (2011) Gen. Relativ. Gravit., 43, p. 3301Gutíerrez-Pineres, A.C., Gonźalez, G.A., Quevedo, H., (2013) Phys. Rev. D, 87, p. 044010Gutíerrez-Pineres, A.C., Lopez-Monsalvo, C.S., Quevedo, H., ArXiv: 1306.6591Garća-Reyes, G., Espitia, O.A., ArXiv: 1307.2281Ernst, F.J., (1968) Phys. Rev., 167, p. 1175Ernst, F.J., (1968) Phys. Rev., 168, p. 1415Kramer, D., Stephani, H., Herlt, E., McCallum, M., (1980) Exact Solutions of Einsteins's Field Equations, , Cambridge University Press Cambridge EnglandPapapetrou, A., Hamouni, A., (1968) Ann. Inst. Henri Poincaŕe, 9, p. 179Lichnerowicz, A., (1971) C. R. Acad. Sci., 273, p. 528Taub, A.H., (1980) J. Math. Phys., 21, p. 1423Israel, E., (1966) Nuovo Cimento B, 44, p. 1Israel, E., (1967) Nuovo Cimento B, 48, p. 463Rubin, V.C., Graham, J.A., Kenney, J.D.P., (1992) Astrophys. J., 394, p. 9Rix, H., Franx, M., Fisher, D., Illingworth, G., (1992) Astrophys. J., 400, p. 5Bertola, F., (1996) Astrophys. J., 458, p. 67Struck, C., (1999) Phys. Rep., 321, p. 1Ciri, R., Bettoni, D., Galletta, G., (1995) Nature, 375, p. 661Klein, C., (2002) Phys. Rev. D, 65, p. 084029Garća-Reyes, G., Gonźalez, G.A., (2009) Int. J. Mod. Phys. D, 18, p. 1461Rayleigh, L., (1917) Proc. R. Soc. Lond. A, 93, p. 148Landau, L.D., Lifshitz, E.M., (1989) Fluid Mechanics, , Addison-Wesley, Reading, MALetelier, P.S., (2003) Phys. Rev. D, 68, p. 104002Kuzmin, G.G., (1956) Astron. Zh., 33, p. 27Toomre, A., (1962) Astrophys. J., 138, p. 385Chazy, J., (1924) Bull. Soc. Math. France, 52, p. 17Curzon, H.E.J., (1924) Proc. London Math. Soc., 23, p. 477Braithwaite, J., Spruit, H.C., (2004) Nature, 431, p. 819http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9067/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9067oai:repositorio.utb.edu.co:20.500.12585/90672021-02-02 14:53:50.792Repositorio Institucional UTBrepositorioutb@utb.edu.co