Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks

This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a si...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9176
Acceso en línea:
https://hdl.handle.net/20.500.12585/9176
Palabra clave:
Distributed generators
Distribution networks
Heuristic approach
Optimal power flow
Power loss minimization
Vortex search optimization
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_9101277070770bfb3ddd73f2e2909213
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9176
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
title Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
spellingShingle Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
Distributed generators
Distribution networks
Heuristic approach
Optimal power flow
Power loss minimization
Vortex search optimization
title_short Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
title_full Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
title_fullStr Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
title_full_unstemmed Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
title_sort Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
dc.subject.keywords.none.fl_str_mv Distributed generators
Distribution networks
Heuristic approach
Optimal power flow
Power loss minimization
Vortex search optimization
topic Distributed generators
Distribution networks
Heuristic approach
Optimal power flow
Power loss minimization
Vortex search optimization
description This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a simple recursive seach method based on sequential searching is proposed. In the case of the slave algorithm, we present an emerging metaheuristic for solving the optimal power flow problem. This metaheuristic is called the vortex search algorithm. It works with a Gaussian distribution and a variable radius function for exploring and exploiting the solution space. Numerical simulations of 33-and 69-node test feeders show its efficiency, simplicity and robusteness in comparison to other methods in the literature. © 2019, World Scientific and Engineering Academy and Society. All rights reserved.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:08Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:08Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv WSEAS Transactions on Power Systems; Vol. 14, pp. 113-121
dc.identifier.issn.none.fl_str_mv 17905060
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9176
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57211463604
56919564100
identifier_str_mv WSEAS Transactions on Power Systems; Vol. 14, pp. 113-121
17905060
Universidad Tecnológica de Bolívar
Repositorio UTB
57211463604
56919564100
url https://hdl.handle.net/20.500.12585/9176
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv World Scientific and Engineering Academy and Society
publisher.none.fl_str_mv World Scientific and Engineering Academy and Society
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074023175&partnerID=40&md5=febc3f620a30a188a8a38469612b0b64
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9176/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021703468056576
spelling 2020-03-26T16:33:08Z2020-03-26T16:33:08Z2019WSEAS Transactions on Power Systems; Vol. 14, pp. 113-12117905060https://hdl.handle.net/20.500.12585/9176Universidad Tecnológica de BolívarRepositorio UTB5721146360456919564100This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a simple recursive seach method based on sequential searching is proposed. In the case of the slave algorithm, we present an emerging metaheuristic for solving the optimal power flow problem. This metaheuristic is called the vortex search algorithm. It works with a Gaussian distribution and a variable radius function for exploring and exploiting the solution space. Numerical simulations of 33-and 69-node test feeders show its efficiency, simplicity and robusteness in comparison to other methods in the literature. © 2019, World Scientific and Engineering Academy and Society. All rights reserved.Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIEN-CIAS) through the National Scholarship Program under Grant 727-2015 and in part by the Universidad Tecnol?gica de Bol?var under Project C2019P020.Recurso electrónicoapplication/pdfengWorld Scientific and Engineering Academy and Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074023175&partnerID=40&md5=febc3f620a30a188a8a38469612b0b64Heuristic approach for optimal location and sizing of distributed generators in AC distribution networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distributed generatorsDistribution networksHeuristic approachOptimal power flowPower loss minimizationVortex search optimizationBocanegra S.Y.Montoya O.D.Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques (2018) Energies, 11 (1018), pp. 1-27. , FebMontoya, O.D., Garces, A., Castro, C.A., Optimal Conductor Size Selection in Radial Distribution Networks Using a Mixed-Integer Non-Linear Programming Formula-tion (2018) IEEE Latin America Transactions, 16 (8), pp. 2213-2220. , AugAl-Hajri, M.F., El-Hawary, M.E., Exploiting the Radial Distribution Structure in Developing a Fast and Flexible Radial Power Flow for Unbalanced Three-Phase Networks (2010) IEEE Trans. Power Del., 25 (1), pp. 378-389. , JanPrasad, K., Ranjan, R., Sahoo, N.C., Chaturvedi, A., Op-timal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm (2005) IEEE Trans. Power Del, 20 (2), pp. 1211-1213. , AprIsmael, S.M., Abdel Aleem, S.H.E., Abdelaziz, A.Y., Zobaa, A.F., Practical Considerations for Optimal Conductor Reinforcement and Hosting Capacity Enhancement in Radial Distribution Systems (2018) IEEE Access, 6, pp. 268-327Carvalho, P.M.S., Ferreira, L.A.F.M., Urban distribution network investment criteria for reliability adequacy (2004) IEEE Trans. Power Syst., 19 (2), pp. 1216-1222. , MayAbdelaziz, A., Ali, E., Elazim, S.A., Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss in-dex (2016) Engineering Science and Technology, an International Journal, 19 (1), pp. 610-618Dixit, M., Kundu, P., Jariwala, H.R., Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 482-493Prakash, P., Khatod, D.K., Optimal sizing and siting techniques for distributed generation in distribution systems: A review (2016) Renewable and Sustainable Energy Reviews, 57, pp. 111-130. , MayMontoya, O.D., Grisales-Noreña, L.F., Garrido, V.M., Optimal Location and Sizing of Capacitors in Radial Distribution Networks Using an Exact MINLP Model for Operating Costs Minimization (2017) WSEAS Transactions on Business and Economics, 14 (27), pp. 244-252Dantas, F.V., Fitiwi, D.Z., Santos, S.F., Catalão, J.P.S., Dynamic reconfiguration of distribution network systems: A key flexibility option for RES integration 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe, pp. 1-6. , (EEEIC / I CPS Europe), June 2017Kianmehr, E., Nikkhah, S., Vahidinasab, V., Giaouris, D., Taylor, P., A Resilience-based Architecture for Joint Distributed Energy Resources Allocation and Hourly Network Reconfiguration (2019) IEEE Trans. Ind. Informat., pp. 1-11Moradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int. J. Electr. Power Energy Syst, 34 (1), pp. 66-74Nguyen, T.P., Dieu, V.N., Vasant, P., Symbiotic Organism Search Algorithm for Optimal Size and Siting of Distributed Generators in Distribution Systems (2017) International Journal of Energy Optimization and Engineering, 6 (3), pp. 1-28. , JulMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , MayKanwar, N., Gupta, N., Niazi, K., Swarnkar, A., Simul-taneous allocation of distributed resources using improved teaching learning based optimization (2015) Energy Conversion and Management, 103, pp. 387-400. , OctMohanty, B., Tripathy, S., A teaching learning based optimization technique for optimal location and size of DG in distribution network (2016) J. Electr. Syst. Inf. Technol, 3 (1), pp. 33-44Gandomkar, M., Vakilian, M., Ehsan, M., A Genet-icBased Tabu Search Algorithm for Optimal DG Allocation in Distribution Networks (2005) Electric Power Components and Systems, 33 (12), pp. 1351-1362Sultana, S., Roy, P.K., Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system (2015) Int. J. Electr. Power Energy Syst, 73, pp. 182-191Sultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl. Soft Comput, 40, pp. 391-404Yammani, C., Maheswarapu, S., Matam, S.K., A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models (2016) Int. J. Electr. Power Energy Syst, 79, pp. 120-131Sudabattula, S.K., Kowsalya, M., Optimal allocation of solar based distributed generators in distribution system using Bat algorithm (2016) Perspect. Sci., 8, pp. 270-272Mohamed, I.A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput, 15, pp. 58-65. , AprSingh, A.K., Parida, S.K., Optimal placement of DGs using MINLP in deregulated electricity market (2010) Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), pp. 1-7. , JuneKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int. J. Electr. Power Energy Syst, 63, pp. 609-617. , Supplement CNojavan, S., Jalali, M., Zare, K., An MINLP approach for optimal DG unit’s allocation in radial/mesh distribution systems take into account voltage stability index (2015) Transactions of Electrical Engineering, 39 (E2), pp. 155-165. , NovInjeti, S.K., Kumar, N.P., A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (2013) Int. J. Electr. Power Energy Syst, 45 (1), pp. 142-151Dogan, B., Olmez, T., Vortex search algorithm for the analog active filter component selection problem (2015) AEU – International Journal of Electronics and Communications, 69 (9), pp. 1243-1253Ozkis, A., Babalk, A., A novel metaheuristic for multi-objective optimization problems: The multi-objective vor- tex search algorithm (2017) Information Sciences, 402, pp. 124-148Ramli, M.A.M., Bouchekara, H.R.E.H., Estimation of solar radiation on PV panel surface with optimum tilt angle using vortex search algorithm (2018) IET Renewable Power Gener, 12 (10), pp. 1138-1145Jamian, J., Mustafa, M., Mokhlis, H., Optimal multiple distributed generation output through rank evolutionary particle swarm optimization (2015) Neurocomputing, 152, pp. 190-198Kollu, R., Rayapudi, S.R., Sadhu, V.L.N., A novel method for optimal placement of distributed generation in distribution systems using HSDO (2014) International Transactions on Electrical Energy Systems, 24 (4), pp. 547-561Mahdad, B., Srairi, K., Adaptive differential search algorithm for optimal location of distributed generation in the presence of SVC for power loss reduction in distribution system (2016) Engineering Science and Technology, an International Journal, 19 (3), pp. 1266-1282http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9176/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9176oai:repositorio.utb.edu.co:20.500.12585/91762021-02-02 14:29:37.87Repositorio Institucional UTBrepositorioutb@utb.edu.co