Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks
This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a si...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9176
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9176
- Palabra clave:
- Distributed generators
Distribution networks
Heuristic approach
Optimal power flow
Power loss minimization
Vortex search optimization
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_9101277070770bfb3ddd73f2e2909213 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9176 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
title |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
spellingShingle |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks Distributed generators Distribution networks Heuristic approach Optimal power flow Power loss minimization Vortex search optimization |
title_short |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
title_full |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
title_fullStr |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
title_full_unstemmed |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
title_sort |
Heuristic approach for optimal location and sizing of distributed generators in AC distribution networks |
dc.subject.keywords.none.fl_str_mv |
Distributed generators Distribution networks Heuristic approach Optimal power flow Power loss minimization Vortex search optimization |
topic |
Distributed generators Distribution networks Heuristic approach Optimal power flow Power loss minimization Vortex search optimization |
description |
This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a simple recursive seach method based on sequential searching is proposed. In the case of the slave algorithm, we present an emerging metaheuristic for solving the optimal power flow problem. This metaheuristic is called the vortex search algorithm. It works with a Gaussian distribution and a variable radius function for exploring and exploiting the solution space. Numerical simulations of 33-and 69-node test feeders show its efficiency, simplicity and robusteness in comparison to other methods in the literature. © 2019, World Scientific and Engineering Academy and Society. All rights reserved. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:08Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
WSEAS Transactions on Power Systems; Vol. 14, pp. 113-121 |
dc.identifier.issn.none.fl_str_mv |
17905060 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9176 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57211463604 56919564100 |
identifier_str_mv |
WSEAS Transactions on Power Systems; Vol. 14, pp. 113-121 17905060 Universidad Tecnológica de Bolívar Repositorio UTB 57211463604 56919564100 |
url |
https://hdl.handle.net/20.500.12585/9176 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society |
publisher.none.fl_str_mv |
World Scientific and Engineering Academy and Society |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074023175&partnerID=40&md5=febc3f620a30a188a8a38469612b0b64 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9176/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021703468056576 |
spelling |
2020-03-26T16:33:08Z2020-03-26T16:33:08Z2019WSEAS Transactions on Power Systems; Vol. 14, pp. 113-12117905060https://hdl.handle.net/20.500.12585/9176Universidad Tecnológica de BolívarRepositorio UTB5721146360456919564100This paper addresses, from a heuristic point of view, the problem of the optimal location and sizing of distributed generators (DGs) in alternating-current distribution networks with radial topology. A master–slave optimization approach is followed to place and size the DGs. In the master stage a simple recursive seach method based on sequential searching is proposed. In the case of the slave algorithm, we present an emerging metaheuristic for solving the optimal power flow problem. This metaheuristic is called the vortex search algorithm. It works with a Gaussian distribution and a variable radius function for exploring and exploiting the solution space. Numerical simulations of 33-and 69-node test feeders show its efficiency, simplicity and robusteness in comparison to other methods in the literature. © 2019, World Scientific and Engineering Academy and Society. All rights reserved.Department of Science, Information Technology and Innovation, Queensland Government, DSITIThis work was supported in part by the Administrative Department of Science, Technology and Innovation of Colombia (COLCIEN-CIAS) through the National Scholarship Program under Grant 727-2015 and in part by the Universidad Tecnol?gica de Bol?var under Project C2019P020.Recurso electrónicoapplication/pdfengWorld Scientific and Engineering Academy and Societyhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85074023175&partnerID=40&md5=febc3f620a30a188a8a38469612b0b64Heuristic approach for optimal location and sizing of distributed generators in AC distribution networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distributed generatorsDistribution networksHeuristic approachOptimal power flowPower loss minimizationVortex search optimizationBocanegra S.Y.Montoya O.D.Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques (2018) Energies, 11 (1018), pp. 1-27. , FebMontoya, O.D., Garces, A., Castro, C.A., Optimal Conductor Size Selection in Radial Distribution Networks Using a Mixed-Integer Non-Linear Programming Formula-tion (2018) IEEE Latin America Transactions, 16 (8), pp. 2213-2220. , AugAl-Hajri, M.F., El-Hawary, M.E., Exploiting the Radial Distribution Structure in Developing a Fast and Flexible Radial Power Flow for Unbalanced Three-Phase Networks (2010) IEEE Trans. Power Del., 25 (1), pp. 378-389. , JanPrasad, K., Ranjan, R., Sahoo, N.C., Chaturvedi, A., Op-timal reconfiguration of radial distribution systems using a fuzzy mutated genetic algorithm (2005) IEEE Trans. Power Del, 20 (2), pp. 1211-1213. , AprIsmael, S.M., Abdel Aleem, S.H.E., Abdelaziz, A.Y., Zobaa, A.F., Practical Considerations for Optimal Conductor Reinforcement and Hosting Capacity Enhancement in Radial Distribution Systems (2018) IEEE Access, 6, pp. 268-327Carvalho, P.M.S., Ferreira, L.A.F.M., Urban distribution network investment criteria for reliability adequacy (2004) IEEE Trans. Power Syst., 19 (2), pp. 1216-1222. , MayAbdelaziz, A., Ali, E., Elazim, S.A., Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss in-dex (2016) Engineering Science and Technology, an International Journal, 19 (1), pp. 610-618Dixit, M., Kundu, P., Jariwala, H.R., Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 482-493Prakash, P., Khatod, D.K., Optimal sizing and siting techniques for distributed generation in distribution systems: A review (2016) Renewable and Sustainable Energy Reviews, 57, pp. 111-130. , MayMontoya, O.D., Grisales-Noreña, L.F., Garrido, V.M., Optimal Location and Sizing of Capacitors in Radial Distribution Networks Using an Exact MINLP Model for Operating Costs Minimization (2017) WSEAS Transactions on Business and Economics, 14 (27), pp. 244-252Dantas, F.V., Fitiwi, D.Z., Santos, S.F., Catalão, J.P.S., Dynamic reconfiguration of distribution network systems: A key flexibility option for RES integration 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe, pp. 1-6. , (EEEIC / I CPS Europe), June 2017Kianmehr, E., Nikkhah, S., Vahidinasab, V., Giaouris, D., Taylor, P., A Resilience-based Architecture for Joint Distributed Energy Resources Allocation and Hourly Network Reconfiguration (2019) IEEE Trans. Ind. Informat., pp. 1-11Moradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int. J. Electr. Power Energy Syst, 34 (1), pp. 66-74Nguyen, T.P., Dieu, V.N., Vasant, P., Symbiotic Organism Search Algorithm for Optimal Size and Siting of Distributed Generators in Distribution Systems (2017) International Journal of Energy Optimization and Engineering, 6 (3), pp. 1-28. , JulMontoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900. , MayKanwar, N., Gupta, N., Niazi, K., Swarnkar, A., Simul-taneous allocation of distributed resources using improved teaching learning based optimization (2015) Energy Conversion and Management, 103, pp. 387-400. , OctMohanty, B., Tripathy, S., A teaching learning based optimization technique for optimal location and size of DG in distribution network (2016) J. Electr. Syst. Inf. Technol, 3 (1), pp. 33-44Gandomkar, M., Vakilian, M., Ehsan, M., A Genet-icBased Tabu Search Algorithm for Optimal DG Allocation in Distribution Networks (2005) Electric Power Components and Systems, 33 (12), pp. 1351-1362Sultana, S., Roy, P.K., Oppositional krill herd algorithm for optimal location of distributed generator in radial distribution system (2015) Int. J. Electr. Power Energy Syst, 73, pp. 182-191Sultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl. Soft Comput, 40, pp. 391-404Yammani, C., Maheswarapu, S., Matam, S.K., A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models (2016) Int. J. Electr. Power Energy Syst, 79, pp. 120-131Sudabattula, S.K., Kowsalya, M., Optimal allocation of solar based distributed generators in distribution system using Bat algorithm (2016) Perspect. Sci., 8, pp. 270-272Mohamed, I.A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput, 15, pp. 58-65. , AprSingh, A.K., Parida, S.K., Optimal placement of DGs using MINLP in deregulated electricity market (2010) Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010), pp. 1-7. , JuneKaur, S., Kumbhar, G., Sharma, J., A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) Int. J. Electr. Power Energy Syst, 63, pp. 609-617. , Supplement CNojavan, S., Jalali, M., Zare, K., An MINLP approach for optimal DG unit’s allocation in radial/mesh distribution systems take into account voltage stability index (2015) Transactions of Electrical Engineering, 39 (E2), pp. 155-165. , NovInjeti, S.K., Kumar, N.P., A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (2013) Int. J. Electr. Power Energy Syst, 45 (1), pp. 142-151Dogan, B., Olmez, T., Vortex search algorithm for the analog active filter component selection problem (2015) AEU – International Journal of Electronics and Communications, 69 (9), pp. 1243-1253Ozkis, A., Babalk, A., A novel metaheuristic for multi-objective optimization problems: The multi-objective vor- tex search algorithm (2017) Information Sciences, 402, pp. 124-148Ramli, M.A.M., Bouchekara, H.R.E.H., Estimation of solar radiation on PV panel surface with optimum tilt angle using vortex search algorithm (2018) IET Renewable Power Gener, 12 (10), pp. 1138-1145Jamian, J., Mustafa, M., Mokhlis, H., Optimal multiple distributed generation output through rank evolutionary particle swarm optimization (2015) Neurocomputing, 152, pp. 190-198Kollu, R., Rayapudi, S.R., Sadhu, V.L.N., A novel method for optimal placement of distributed generation in distribution systems using HSDO (2014) International Transactions on Electrical Energy Systems, 24 (4), pp. 547-561Mahdad, B., Srairi, K., Adaptive differential search algorithm for optimal location of distributed generation in the presence of SVC for power loss reduction in distribution system (2016) Engineering Science and Technology, an International Journal, 19 (3), pp. 1266-1282http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9176/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9176oai:repositorio.utb.edu.co:20.500.12585/91762021-02-02 14:29:37.87Repositorio Institucional UTBrepositorioutb@utb.edu.co |