Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals

This express brief presents the stability analysis of single-phase microgrids (SP-MG) operating under master-slave connection with constant power terminals. The SP-MG is composed of linear elements, nonlinear loads, and distributed generators modeled as PQ constant terminals interconnected through p...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9117
Acceso en línea:
https://hdl.handle.net/20.500.12585/9117
Palabra clave:
Hamiltonian systems
Lyapunov's direct method
Single-phase microgrids
Stability analysis
Electric load flow
Electric load management
Hamiltonians
Mathematical models
Power converters
System stability
Circuit stability
Direct method
Hamiltonian systems
Load modeling
Micro grid
Power system stability
Stability analysis
Stability criteria
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_90e4123b15f9c14a0b9ff6ae31ae8219
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9117
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
title Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
spellingShingle Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
Hamiltonian systems
Lyapunov's direct method
Single-phase microgrids
Stability analysis
Electric load flow
Electric load management
Hamiltonians
Mathematical models
Power converters
System stability
Circuit stability
Direct method
Hamiltonian systems
Load modeling
Micro grid
Power system stability
Stability analysis
Stability criteria
title_short Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
title_full Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
title_fullStr Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
title_full_unstemmed Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
title_sort Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminals
dc.subject.keywords.none.fl_str_mv Hamiltonian systems
Lyapunov's direct method
Single-phase microgrids
Stability analysis
Electric load flow
Electric load management
Hamiltonians
Mathematical models
Power converters
System stability
Circuit stability
Direct method
Hamiltonian systems
Load modeling
Micro grid
Power system stability
Stability analysis
Stability criteria
topic Hamiltonian systems
Lyapunov's direct method
Single-phase microgrids
Stability analysis
Electric load flow
Electric load management
Hamiltonians
Mathematical models
Power converters
System stability
Circuit stability
Direct method
Hamiltonian systems
Load modeling
Micro grid
Power system stability
Stability analysis
Stability criteria
description This express brief presents the stability analysis of single-phase microgrids (SP-MG) operating under master-slave connection with constant power terminals. The SP-MG is composed of linear elements, nonlinear loads, and distributed generators modeled as PQ constant terminals interconnected through power electronic converters. Lyapunov's direct method through a Hamiltonian representation of the grid is used to demonstrate stability. The non-autonomous model of the SP-MG is transformed into an autonomous equivalent model based on the dynamics of the error. The proposed analysis shows that if there is an admissible trajectory {x} ^{\boldsymbol {\star }} solution of the power flow equations, then the SP-MG is stable in the sense of Lyapunov. © 2004-2012 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:59Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:59Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 7; pp. 1212-1216
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9117
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2018.2878188
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
36449223500
51461033000
55989699400
37104976300
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 7; pp. 1212-1216
15497747
10.1109/TCSII.2018.2878188
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
36449223500
51461033000
55989699400
37104976300
url https://hdl.handle.net/20.500.12585/9117
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055673178&doi=10.1109%2fTCSII.2018.2878188&partnerID=40&md5=0390756627cb7bb80c4e42e7222eb1b3
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9117/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021770201530368
spelling 2020-03-26T16:32:59Z2020-03-26T16:32:59Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 7; pp. 1212-121615497747https://hdl.handle.net/20.500.12585/911710.1109/TCSII.2018.2878188Universidad Tecnológica de BolívarRepositorio UTB5691956410036449223500514610330005598969940037104976300This express brief presents the stability analysis of single-phase microgrids (SP-MG) operating under master-slave connection with constant power terminals. The SP-MG is composed of linear elements, nonlinear loads, and distributed generators modeled as PQ constant terminals interconnected through power electronic converters. Lyapunov's direct method through a Hamiltonian representation of the grid is used to demonstrate stability. The non-autonomous model of the SP-MG is transformed into an autonomous equivalent model based on the dynamics of the error. The proposed analysis shows that if there is an admissible trajectory {x} ^{\boldsymbol {\star }} solution of the power flow equations, then the SP-MG is stable in the sense of Lyapunov. © 2004-2012 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 IA103519, IN116516 Department of Science, Information Technology and Innovation, Queensland Government, DSITIManuscript received July 20, 2018; revised October 17, 2018; accepted October 22, 2018. Date of publication October 25, 2018; date of current version June 26, 2019. This work was supported in part by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015, and in part by DGAPA-UNAM under Grant IN116516 and Grant IA103519. This brief was recommended by Associate Editor Y. Huang. (Corresponding author: O. D. Montoya.) O. D. Montoya is with the Department of Electrical and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85055673178&doi=10.1109%2fTCSII.2018.2878188&partnerID=40&md5=0390756627cb7bb80c4e42e7222eb1b3Stability Analysis of Single-Phase Low-Voltage AC Microgrids with Constant Power Terminalsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Hamiltonian systemsLyapunov's direct methodSingle-phase microgridsStability analysisElectric load flowElectric load managementHamiltoniansMathematical modelsPower convertersSystem stabilityCircuit stabilityDirect methodHamiltonian systemsLoad modelingMicro gridPower system stabilityStability analysisStability criteriaMontoya O.D.Garces A.Avila-Becerril S.Espinosa-Pérez, G.Serra F.M.Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Ke, Y.-L., Chuang, Y.-C., A novel single-stage power-factorcorrection circuit with high-frequency resonant energy tank for DC-link inverters (2006) IEEE Trans. Circuits Syst. II, Exp. Briefs, 53 (2), pp. 115-119. , FebOrtega, A., Milano, F., Modeling, simulation, and comparison of control techniques for energy storage systems (2017) IEEE Trans. Power Syst., 32 (3), pp. 2445-2454. , MaySun, Q., Zhou, J., Guerrero, J.M., Zhang, H., Hybrid three-phase: Single-phase microgrid architecture with power management capabilities (2015) IEEE Trans. Power Electron., 30 (10), pp. 5964-5977. , OctMandal, K., Banerjee, S., Synchronization phenomena in interconnected power electronic systems (2016) IEEE Trans. Circuits Syst. II, Exp. Briefs, 63 (2), pp. 221-225. , FebMontoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258. , AprSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugKarimipour, D., Salmasi, F.R., Stability analysis of AC microgrids with constant power loads based on Popov's absolute stability criterion (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (7), pp. 696-700. , JulSanchez, S., Ortega, R., Griño, R., Bergna, G., Molinas, M., Conditions for existence of equilibria of systems with constant power loads (2014) IEEE Trans. Circuits Syst. I, Reg. Papers, 61 (7), pp. 2204-2211. , JulSoultanis, N.L., Papathanasiou, S.A., Hatziargyriou, N.D., A stability algorithm for the dynamic analysis of inverter dominated unbalanced LV microgrids (2007) IEEE Trans. Power Syst., 22 (1), pp. 294-304. , FebAvila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFAC-PapersOnLine, 51 (3), pp. 187-192He, Y., Chung, H.S., Lai, C., Zhang, X., Wu, W., Active cancelation of equivalent grid impedance for improving stability and injected power quality of grid-connected inverter under variable grid condition (2018) IEEE Trans. Power Electron., 33 (11), pp. 9387-9398. , NovMishra, S., Pullaguram, D., Buragappu, S.A., Ramasubramanian, D., Single-phase synchronverter for a grid-connected roof top photovoltaic system (2016) IET Renew. Power Gener., 10 (8), pp. 1187-1194. , SepGonzatti, R.B., Smart impedance: A new way to look at hybrid filters (2016) IEEE Trans. Smart Grid, 7 (2), pp. 837-846. , MarMontoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach (2018) Proc. IEEE 9th Latin Amer. Symp. Circuits Syst. (LASCAS), pp. 1-4. , FebRezaei, M.M., Soltani, J., A robust control strategy for a gridconnected multi-bus microgrid under unbalanced load conditions (2015) Int. J. Elect. Power Energy Syst., 71, pp. 68-76. , Octhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9117/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9117oai:repositorio.utb.edu.co:20.500.12585/91172023-05-26 08:49:08.308Repositorio Institucional UTBrepositorioutb@utb.edu.co