Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry
This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integra...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9144
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9144
- Palabra clave:
- Ergonomic constraints
Genetic algorithm
Job rotation
Manufacturing
Combinatorial optimization
Ergonomics
Genetic algorithms
Industrial research
Manufacture
Multiobjective optimization
Occupational risks
Scheduling algorithms
Combinatorial optimization problems
Computational time
Job rotation
Manufacturing environments
Manufacturing industries
Multi-objective optimization problem
Non- dominated sorting genetic algorithms
Similar solution
Computational efficiency
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_909662ed9448bf0e481688c455dcd4e0 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9144 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
title |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
spellingShingle |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry Ergonomic constraints Genetic algorithm Job rotation Manufacturing Combinatorial optimization Ergonomics Genetic algorithms Industrial research Manufacture Multiobjective optimization Occupational risks Scheduling algorithms Combinatorial optimization problems Computational time Job rotation Manufacturing environments Manufacturing industries Multi-objective optimization problem Non- dominated sorting genetic algorithms Similar solution Computational efficiency |
title_short |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
title_full |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
title_fullStr |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
title_full_unstemmed |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
title_sort |
Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry |
dc.subject.keywords.none.fl_str_mv |
Ergonomic constraints Genetic algorithm Job rotation Manufacturing Combinatorial optimization Ergonomics Genetic algorithms Industrial research Manufacture Multiobjective optimization Occupational risks Scheduling algorithms Combinatorial optimization problems Computational time Job rotation Manufacturing environments Manufacturing industries Multi-objective optimization problem Non- dominated sorting genetic algorithms Similar solution Computational efficiency |
topic |
Ergonomic constraints Genetic algorithm Job rotation Manufacturing Combinatorial optimization Ergonomics Genetic algorithms Industrial research Manufacture Multiobjective optimization Occupational risks Scheduling algorithms Combinatorial optimization problems Computational time Job rotation Manufacturing environments Manufacturing industries Multi-objective optimization problem Non- dominated sorting genetic algorithms Similar solution Computational efficiency |
description |
This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Ambient Intelligence and Humanized Computing; Vol. 10, Núm. 5; pp. 2063-2090 |
dc.identifier.issn.none.fl_str_mv |
18685137 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9144 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12652-018-0814-3 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
15078194000 57194034904 57202852177 57193533853 |
identifier_str_mv |
Journal of Ambient Intelligence and Humanized Computing; Vol. 10, Núm. 5; pp. 2063-2090 18685137 10.1007/s12652-018-0814-3 Universidad Tecnológica de Bolívar Repositorio UTB 15078194000 57194034904 57202852177 57193533853 |
url |
https://hdl.handle.net/20.500.12585/9144 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049552472&doi=10.1007%2fs12652-018-0814-3&partnerID=40&md5=83295ee67c4cbae60651a73871d79b2d |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9144/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021573996183552 |
spelling |
2020-03-26T16:33:03Z2020-03-26T16:33:03Z2019Journal of Ambient Intelligence and Humanized Computing; Vol. 10, Núm. 5; pp. 2063-209018685137https://hdl.handle.net/20.500.12585/914410.1007/s12652-018-0814-3Universidad Tecnológica de BolívarRepositorio UTB15078194000571940349045720285217757193533853This research proposes a mathematical model of the problem of job rotation considering ergonomic aspects in repetitive works, lifting tasks and awkward postures in manufacturing environments with high variability. The mathematical model is formulated as a multi-objective optimization problem integrating the ergonomic constraints and is solved using improved non-dominated sorting genetic algorithm. The proposed algorithm allows the generation of diversified results and a greater search convergence on the Pareto front. The algorithm avoids the loss of convergence in each border by means of change and replacement of similar solutions. In this strategy, a single similar result is preserved and the best solution of the previous generation is included. If the outcomes are similar, new randomly generated individuals are proposed to encourage diversity. The obtained results improve the conditions of 69% of the workers. The results show that if the worker rotates starting from a high risk, his variation in risk always decreases in his next assignment. Within the job rotation scheme, no worker is exposed simultaneously to high ergonomic risk thresholds. The model and the algorithm provide good results while considering ergonomic risks. The proposed algorithm shows the potentiality to generate a set of quality of response (Pareto Frontier) in a combinatorial optimization problem in an efficient computational time. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049552472&doi=10.1007%2fs12652-018-0814-3&partnerID=40&md5=83295ee67c4cbae60651a73871d79b2dApplication of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industryinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Ergonomic constraintsGenetic algorithmJob rotationManufacturingCombinatorial optimizationErgonomicsGenetic algorithmsIndustrial researchManufactureMultiobjective optimizationOccupational risksScheduling algorithmsCombinatorial optimization problemsComputational timeJob rotationManufacturing environmentsManufacturing industriesMulti-objective optimization problemNon- dominated sorting genetic algorithmsSimilar solutionComputational efficiencySana S.S.Ospina-Mateus H.Arrieta F.G.Chedid J.A.Aptel, M., Cail, F., Gerling, A., Louis, O., Proposal of parameters to implement a workstation rotation system to protect against MSDs (2008) Int J Ind Ergon, 38 (11-12), pp. 900-909Arya, A., Using job rotation to extract employee information (2004) J Law Econ Organ, 20 (2), pp. 400-414Asensio-Cuesta, S., Diego-Mas, J.A., Canós-Darós, L., Andrés-Romano, C., A genetic algorithm for the design of job rotation schedules considering ergonomic and competence criteria (2012) Int J Adv Manuf Technol, 60 (9-12), pp. 1161-1174Asensio-Cuesta, S., Diego-Mas, J.A., Cremades-Oliver, L.V., González-Cruz, M.C., A method to design job rotation schedules to prevent work-related musculoskeletal disorders in repetitive work (2012) Int J Prod Res, 50 (24), pp. 7467-7478Ayough, A., Zandieh, M., Farsijani, H., GA and ICA approaches to job rotation scheduling problem: considering employee’s boredom (2012) Int J Adv Manuf Technol, 60 (5-8), pp. 651-666Azizi, N., Zolfaghari, S., Liang, M., Modeling job rotation in manufacturing systems: the study of employee’s boredom and skill variations (2010) Int J Prod Econ, 123 (1), pp. 69-85Bhadury, J., Radovilsky, Z., Job rotation using the multi-period assignment model (2006) Int J Prod Res, 44 (20), pp. 4431-4444Brunold, J., Durst, S., Intellectual capital risks and job rotation (2012) J Intellect Cap, 13 (2), pp. 178-195(2017) Nonfatal occupational injuries and illnesses resulting in days away from work in 2016, , Bureau of Labor Statistics, Washington, DCCardenas-Barron, L.E., Adaptive genetic algorithm for lot-sizing problem with self-adjustment operation rate: a discussion (2010) Int J Prod Econ, 123, pp. 243-245Cardenas-Barron, L.E., Taleizadeh, A.A., Hybrid metaheuristics algorithms for inventory management problems (2012) Meta-Heuristics Optim Algorithms Eng Bus Econ Finance, 11, pp. 312-356Carnahan, B.J., Redfern, M.S., Norman, B.A., A genetic algorithm for designing job rotation schedules considering ergonomic constraints (1999) Paper Presented at the Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 CongressCarnahan, B.J., Redfern, M.S., Norman, B., Designing safe job rotation schedules using optimization and heuristic search (2000) Ergonomics, 43 (4), pp. 543-560Chiasson, M., Imbeau, D., Aubry, K., Delisle, A., Comparing the results of eight methods used to evaluate risk factors associated with musculoskeletal disorders (2012) Int J Ind Ergon, 42 (5), pp. 478-488Colombini, D., Occhipinti, E., Grieco, A., A check-list model for the quick evaluation of risk exposure (ocra index) (2002) Ergonomics book series, 2, pp. 11-117. , Colombini DEO, Antonio G, (eds), Elsevier, New YorkCoronado-Hernández, J.R., Ospina-Mateus, H., Incorporating ergonomic risks into U-shaped assembly line balancing problem (2013) WPOM, 4 (2), pp. 29-43David, G.C., Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. [Review] (2005) Occup Med (Lond), 55 (3), pp. 190-199Davis, K., Jorgensen, M., Schneider, S., Ergonomics-pros and cons of job rotation as a means of reducing injury costs (2005) J Occup Environ Hyg, 2 (1), pp. D1-D3Diego-Mas, J.A., Asensio-Cuesta, S., Sanchez-Romero, M.A., Artacho-Ramirez, M.A., A multi-criteria genetic algorithm for the generation of job rotation schedules (2009) Int J Ind Ergon, 39 (1), pp. 23-33Ehrgott, M., Ruzika, S., (2004) An Improved E-Constraint Method for Multiobjective Programming, , https://urn:nbn:de:hbz:386-kluedo-13962, Accessed 23 Mar 2018Eriksson, T., Ortega, J., The adoption of job rotation: testing the theories (2006) Indus Labor Relat Rev, 59, pp. 653-666Ezeukwu, A.O., Ugwuoke, J., Egwuonwu, A.V., Abaraogu, U.O., Prevalence of work-related musculoskeletal pain among timber workers in Ehgu Metrepolis, Nigeria (2011) Cont J Trop Med, 5 (2), pp. 11-18Filus, R., Okimorto, M.L., The effect of job rotation intervals on muscle fatigue–lactic acid (2011) Work (Reading Mass), 41, pp. 1572-1581Frazer, M., Norman, R., Wells, R., Neumann, P., The effects of job rotation on the risk of reporting low back pain (2003) Ergonomics, 46 (9), pp. 904-919Ham, M., Lee, Y.H., Kim, S.H., Real-time scheduling of multi-stage flexible job shop floor (2011) Int J Prod Res, 99, pp. 3715-3730Hazzard, L., Mautz, J., Job rotation cuts cumulative trauma cases (1992) Pers J, 47 (10), pp. 29-32Henderson, C.J., Kumar, S., Ergonomic job rotation in poultry processing (1992) Adv Ind Ergon Saf, 4, pp. 443-450Ho, W.H., Chang, C.S., Shih, Y.L., Liang, R.D., Effects of job rotation and role stress among nurses on job satisfaction and organizational commitment (2009) BMC Health Serv Res, 9, p. 8Hsieh, A.-T., Chao, H.Y., A reassessment of the relationship between job specialization, job rotation and job burnout: example of Taiwan’s high-technology industry (2004) Int J Hum Resour Manag, 15 (6), pp. 1108-1123Huang, H.J., Job rotation from the employees’ point of view (1999) Res Pract Hum Resour Manag Sci, 7 (1), pp. 75-85(2007) Ergonomics. Manual Handling., , Part 3: handling of low loads at high frequencyJorgensen, M., Davis, K., Characteristics of job rotation in the Midwest US manufacturing sector (2005) Ergonomics, 48 (15), pp. 1721-1733Karagöz, S., Yıldız, A.R., A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects (2017) Int J Veh Des, 73 (1-3), pp. 179-188Karhu, O., Kansi, P., Kuorinka, I., Correcting working postures in industry: a practical method for analysis (1977) Appl Ergon, 8 (4), pp. 199-201Kiani, M., Yildiz, A.R., A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization (2016) Arch Comput Methods Eng, 23 (4), pp. 723-734Kogi, K., Kawakami, T., Low-cost work improvements that can reduce the risk of musculoskeletal disorders (2003) Int J Ind Ergon, 31 (3), pp. 179-184Kuah, C.T., Wong, K.Y., Wong, W.P., Monte Carlo data envelopment analysis with genetic algorithm for knowledge management performance measurement (2012) Expert Syst Appl, 39, pp. 9348-9358Kuijer, P.P., Visser, B., Kemper, H.C.G., Job rotation as a factor in reducing physical workload at a refuse collecting department (1999) Ergonomics, 42 (9), pp. 1167-1178Lodree, E.J., Geiger, C.D., Jiang, X., Taxonomy for integrating scheduling theory and human factors: review and research opportunities (2009) Int J Ind Ergon, 39 (1), pp. 39-51Mathiassen, S.E., Diversity and variation in biomechanical exposure: what is it, and why would we like to know? (2006) Appl Ergon, 37 (4), pp. 419-427Mavrotas, G., Effective implementation of the ε-constraint method in multi-objective mathematical programming problems (2009) Appl Math Comput, 213 (2), pp. 455-465McAtamney, L., Nigel Corlett, E., RULA: a survey method for the investigation of work-related upper limb disorders (1993) Appl Ergon, 24 (2), pp. 91-99Michalos, G., Makris, S., Rentzos, L., Chryssolouris, G., Dynamic job rotation for workload balancing in human based assembly systems (2010) CIRP J Manuf Sci Technol, 2 (3), pp. 153-160Michalos, G., Makris, S., Mourtzis, D., A web based tool for dynamic job rotation scheduling using multiple criteria (2011) CIRP Ann Manuf Technol, 60 (1), pp. 453-456Moore, S.J., Garg, A., The strain index: a proposed method to analyze jobs for risk of distal upper extremity disorders (1995) Am Ind Hyg Assoc, 56 (5), pp. 443-458Moreira, M.C.O., Costa, A.M., Hybrid heuristics for planning job rotation schedules in assembly lines with heterogeneous workers (2013) Int J Prod Econ, 141 (2), pp. 552-560Mossa, G., Boenzi, F., Digiesi, S., Mummolo, G., Romano, V.A., Productivity and ergonomic risk in human based production systems: a job-rotation scheduling model (2016) Int J Prod Econ, 171, pp. 471-477Occhipinti, E., Colombini, D., Updating reference values and predictive models of the OCRA method in the risk assessment of work-related musculoskeletal disorders of the upper limbs (2007) Ergonomics, 50 (11), pp. 1727-1739Otto, A., Scholl, A., Reducing ergonomic risks by job rotation scheduling (2013) OR Spectrum, 35 (3), pp. 711-733Öztürk, N., Yıldız, A.R., Kaya, N., Öztürk, F., Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE (2006) Concurr Eng Res Appl, 14 (1), pp. 5-16Pholdee, N., Bureerat, S., Yıldız, A.R., Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame (2017) Int J Veh Des, 73 (1-3), pp. 20-53Rissen, D., Melin, B., Sandsj, L., Dohns, I., Lundberg, U., Psycho physiological stress reactions, trapezius muscle activity, and neck and shoulder pain among female cashiers before and after introduction of job rotation (2002) Work Stress, 16 (2), pp. 127-137Rodriguez, A.C., Barrero, L.H., Job rotation: effects on muscular activity variability (2017) Appl Ergon, 60, pp. 83-92Santosa, B., Damayanti, R., Sarkar, B., Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia (2016) Prod Manuf Res, 4, pp. 90-113Seckiner, S.U., Kurt, M., Ant colony optimization for the job rotation scheduling problem (2008) Appl Math Comput, 201 (1-2), pp. 149-160Sekiner, S.U., Kurt, M., A simulated annealing approach to the solution of job problems (2007) Appl Math Comput, 188 (1), pp. 31-45Snook, S.H., Ciriello, V.M., The design of manual handling tasks: revised tables of maximum acceptable weights and forces (1991) Ergonomics, 34 (9), pp. 1197-1213Tella, B., Akinbo, S., Saheed, A., Caleb, G., Prevalence and impacts of low back pain among peasant farmers in south-west Nigeria (2013) Int J Occup Med Environ Health, 26, pp. 621-627Tharmmaphornphilas, W., Green, B., Carnahan, B.J., Norman, B.A., Applying mathematical modeling to create job rotation schedules for minimizing occupational noise exposure (2003) Aiha J, 64 (3), pp. 401-405Waters, T., Lu, M.-L., Occhipinti, E., New procedure for assessing sequential manual lifting jobs using the revised NIOSH lifting equation (2007) Ergonomics, 50 (11), pp. 1761-1770Wells, R., McFall, K., Task selection for increased mechanical exposure variation: relevance to job rotation (2010) Ergonomics, 53 (3), pp. 314-323Yildiz, A.R., A comparative study of population-based optimization algorithms for turning operations (2012) Inf Sci, 210, pp. 81-88Yildiz, A.R., Comparison of evolutionary-based optimization algorithms for structural design optimization (2013) Eng Appl Artif Intell, 26 (1), pp. 327-333Yıldız, B.S., A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems (2017) Int J Veh Des, 73 (1-3), pp. 208-218Yıldız, B.S., Lekesiz, H., Fatigue-based structural optimisation of vehicle components (2017) Int J Veh Des, 73 (1-3), pp. 54-62Yildiz, A.R., Saitou, K., Topology synthesis of multi component structural assemblies in continuum domains (2011) J Mech Des, 133 (1), p. 011008Yildiz, A.R., Solanki, K.N., Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach (2012) Int J Adv Manuf Technol, 59 (1-4), pp. 367-376Yıldız, B.S., Yıldız, A.R., Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes (2017) Mater Test, 59 (5), pp. 425-429Yildiz, B.S., Lekesiz, H., Yildiz, A.R., Structural design of vehicle components using gravitational search and charged system search algorithms (2016) Mater Test, 58 (1), pp. 79-81Yıldız, A.R., Kurtuluş, E., Demirci, E., Yıldız, B.S., Karagöz, S., Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm (2016) Mater Test, 58 (1), pp. 75-78http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9144/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9144oai:repositorio.utb.edu.co:20.500.12585/91442021-02-02 14:35:44.689Repositorio Institucional UTBrepositorioutb@utb.edu.co |