Deep learning architectures for the analysis and classification of brain tumors in MR images

The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tiss...

Full description

Autores:
Osorio-Barone, A.
Contreras-Ortiz, S.H.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12333
Acceso en línea:
https://hdl.handle.net/20.500.12585/12333
Palabra clave:
Object Detection;
Deep Learning;
IOU
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_905de559e9e12983076efa4b1ff0ec41
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12333
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Deep learning architectures for the analysis and classification of brain tumors in MR images
title Deep learning architectures for the analysis and classification of brain tumors in MR images
spellingShingle Deep learning architectures for the analysis and classification of brain tumors in MR images
Object Detection;
Deep Learning;
IOU
LEMB
title_short Deep learning architectures for the analysis and classification of brain tumors in MR images
title_full Deep learning architectures for the analysis and classification of brain tumors in MR images
title_fullStr Deep learning architectures for the analysis and classification of brain tumors in MR images
title_full_unstemmed Deep learning architectures for the analysis and classification of brain tumors in MR images
title_sort Deep learning architectures for the analysis and classification of brain tumors in MR images
dc.creator.fl_str_mv Osorio-Barone, A.
Contreras-Ortiz, S.H.
dc.contributor.author.none.fl_str_mv Osorio-Barone, A.
Contreras-Ortiz, S.H.
dc.subject.keywords.spa.fl_str_mv Object Detection;
Deep Learning;
IOU
topic Object Detection;
Deep Learning;
IOU
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance images. The architectures of the present study were VGG-16, ResNet-50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG-16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet-50 with 94.89%, and finally, Xception with 92.18%. © 2020 SPIE
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:23:22Z
dc.date.available.none.fl_str_mv 2023-07-21T16:23:22Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12333
dc.identifier.doi.none.fl_str_mv 10.1117/12.2579618
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE.
10.1117/12.2579618
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12333
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/1/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/4/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/5/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.jpg
bitstream.checksum.fl_str_mv 44c77d6c35ae81ad06e7c19101cef988
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
3ab926960b1ee42612cafc950b97ff54
ca4d0d46f125c7f3be1e37e5bbfedd14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021576206581760
spelling Osorio-Barone, A.9dc91c41-f76a-4994-838c-fa39f38e1beeContreras-Ortiz, S.H.690f7c84-d6e0-464a-b059-47146b2f92f52023-07-21T16:23:22Z2023-07-21T16:23:22Z20202023Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE.https://hdl.handle.net/20.500.12585/1233310.1117/12.2579618Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance images. The architectures of the present study were VGG-16, ResNet-50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG-16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet-50 with 94.89%, and finally, Xception with 92.18%. © 2020 SPIE6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of SPIE - The International Society for Optical EngineeringDeep learning architectures for the analysis and classification of brain tumors in MR imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Object Detection;Deep Learning;IOULEMBCartagena de IndiasWorld Health Organization—Cancer. Cited 2516 times. Accessed: 2020-07-14 https://www.who.int/health-topics/cancer#tab=tab_1Gladson, C.L., Prayson, R.A., Liu, W.M. The pathobiology of glioma tumors (2010) Annual Review of Pathology: Mechanisms of Disease, 5, pp. 33-50. Cited 182 times. doi: 10.1146/annurev-pathol-121808-102109Shimon, I., Melmed, S. Pituitary Tumor Pathogenesis (1997) Journal of Clinical Endocrinology and Metabolism, 82 (6), pp. 1675-1681. Cited 152 times. http://jcem.endojournals.org doi: 10.1210/jc.82.6.1675Afshar, P., Plataniotis, K.N., Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683759, pp. 1368-1372. Cited 178 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683759Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., (...), Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition (Open Access) (2015) PLoS ONE, 10 (10), art. no. e0140381. Cited 364 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0140381&representation=PDF doi: 10.1371/journal.pone.0140381Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning (2020) Circuits, Systems, and Signal Processing, 39 (2), pp. 757-775. Cited 232 times. http://www.springer.com/sgw/cda/frontpage/0,11855,5-40109-70-1176077-0,00.html doi: 10.1007/s00034-019-01246-3Saxena, P., Maheshwari, A., Maheshwari, S. (2019) Predictive Modeling of Brain Tumor: A Deep Learning Approach. Cited 10 times. arXiv preprintCheng, J. (2017) Brain Tumor Dataset, 4.Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks (2017) Communications in Computer and Information Science, 723, pp. 506-517. Cited 516 times. http://www.springer.com/series/7899 ISBN: 978-331960963-8 doi: 10.1007/978-3-319-60964-5_44Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. Cited 41989 times. arXiv preprintChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 7086 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdfScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdfapplication/pdf197850https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/1/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf44c77d6c35ae81ad06e7c19101cef988MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.txtScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.txtExtracted texttext/plain2481https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/4/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.txt3ab926960b1ee42612cafc950b97ff54MD54THUMBNAILScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.jpgScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.jpgGenerated Thumbnailimage/jpeg6033https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/5/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.jpgca4d0d46f125c7f3be1e37e5bbfedd14MD5520.500.12585/12333oai:repositorio.utb.edu.co:20.500.12585/123332023-07-22 00:17:45.175Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=