Deep learning architectures for the analysis and classification of brain tumors in MR images
The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tiss...
- Autores:
-
Osorio-Barone, A.
Contreras-Ortiz, S.H.
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12333
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12333
- Palabra clave:
- Object Detection;
Deep Learning;
IOU
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_905de559e9e12983076efa4b1ff0ec41 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12333 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
spellingShingle |
Deep learning architectures for the analysis and classification of brain tumors in MR images Object Detection; Deep Learning; IOU LEMB |
title_short |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_full |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_fullStr |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_full_unstemmed |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
title_sort |
Deep learning architectures for the analysis and classification of brain tumors in MR images |
dc.creator.fl_str_mv |
Osorio-Barone, A. Contreras-Ortiz, S.H. |
dc.contributor.author.none.fl_str_mv |
Osorio-Barone, A. Contreras-Ortiz, S.H. |
dc.subject.keywords.spa.fl_str_mv |
Object Detection; Deep Learning; IOU |
topic |
Object Detection; Deep Learning; IOU LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance images. The architectures of the present study were VGG-16, ResNet-50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG-16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet-50 with 94.89%, and finally, Xception with 92.18%. © 2020 SPIE |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T16:23:22Z |
dc.date.available.none.fl_str_mv |
2023-07-21T16:23:22Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12333 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2579618 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE. 10.1117/12.2579618 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12333 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/1/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/4/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/5/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.jpg |
bitstream.checksum.fl_str_mv |
44c77d6c35ae81ad06e7c19101cef988 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 3ab926960b1ee42612cafc950b97ff54 ca4d0d46f125c7f3be1e37e5bbfedd14 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021576206581760 |
spelling |
Osorio-Barone, A.9dc91c41-f76a-4994-838c-fa39f38e1beeContreras-Ortiz, S.H.690f7c84-d6e0-464a-b059-47146b2f92f52023-07-21T16:23:22Z2023-07-21T16:23:22Z20202023Osorio-Barone, A., & Contreras-Ortiz, S. H. (2020, November). Deep learning architectures for the analysis and classification of brain tumors in MR images. In 16th International Symposium on Medical Information Processing and Analysis (Vol. 11583, pp. 92-98). SPIE.https://hdl.handle.net/20.500.12585/1233310.1117/12.2579618Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe need to make timely and accurate diagnoses of brain diseases has posed challenges to computer-aided diagnosis systems. In this field, advances in deep learning techniques play an important role, as they carry out processes to extract relevant anatomical and functional characteristics of the tissues to classify them. In this paper, the study of various architectures of convolutional neural networks (CNN) is presented, with the aim of classifying three types of brain tumors in high-contrast magnetic resonance images. The architectures of the present study were VGG-16, ResNet-50, Xception, whose implementations are defined in the Keras framework. The evaluation of these architectures were preceded by data augmentation techniques and transfer learning, which improved the effectiveness of the training process, thanks to the use of pre-trained models with the ImageNet dataset. The VGG-16 architecture was the one with the best performance, with an accuracy of 98.04%, followed by ResNet-50 with 94.89%, and finally, Xception with 92.18%. © 2020 SPIE6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Proceedings of SPIE - The International Society for Optical EngineeringDeep learning architectures for the analysis and classification of brain tumors in MR imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Object Detection;Deep Learning;IOULEMBCartagena de IndiasWorld Health Organization—Cancer. Cited 2516 times. Accessed: 2020-07-14 https://www.who.int/health-topics/cancer#tab=tab_1Gladson, C.L., Prayson, R.A., Liu, W.M. The pathobiology of glioma tumors (2010) Annual Review of Pathology: Mechanisms of Disease, 5, pp. 33-50. Cited 182 times. doi: 10.1146/annurev-pathol-121808-102109Shimon, I., Melmed, S. Pituitary Tumor Pathogenesis (1997) Journal of Clinical Endocrinology and Metabolism, 82 (6), pp. 1675-1681. Cited 152 times. http://jcem.endojournals.org doi: 10.1210/jc.82.6.1675Afshar, P., Plataniotis, K.N., Mohammadi, A. Capsule Networks for Brain Tumor Classification Based on MRI Images and Coarse Tumor Boundaries (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683759, pp. 1368-1372. Cited 178 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683759Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., (...), Feng, Q. Enhanced performance of brain tumor classification via tumor region augmentation and partition (Open Access) (2015) PLoS ONE, 10 (10), art. no. e0140381. Cited 364 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0140381&representation=PDF doi: 10.1371/journal.pone.0140381Rehman, A., Naz, S., Razzak, M.I., Akram, F., Imran, M. A Deep Learning-Based Framework for Automatic Brain Tumors Classification Using Transfer Learning (2020) Circuits, Systems, and Signal Processing, 39 (2), pp. 757-775. Cited 232 times. http://www.springer.com/sgw/cda/frontpage/0,11855,5-40109-70-1176077-0,00.html doi: 10.1007/s00034-019-01246-3Saxena, P., Maheshwari, A., Maheshwari, S. (2019) Predictive Modeling of Brain Tumor: A Deep Learning Approach. Cited 10 times. arXiv preprintCheng, J. (2017) Brain Tumor Dataset, 4.Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y. Automatic brain tumor detection and segmentation using U-net based fully convolutional networks (2017) Communications in Computer and Information Science, 723, pp. 506-517. Cited 516 times. http://www.springer.com/series/7899 ISBN: 978-331960963-8 doi: 10.1007/978-3-319-60964-5_44Simonyan, K., Zisserman, A. (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition. Cited 41989 times. arXiv preprintChollet, F. Xception: Deep learning with depthwise separable convolutions (Open Access) (2017) Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, pp. 1800-1807. Cited 7086 times. ISBN: 978-153860457-1 doi: 10.1109/CVPR.2017.195He, K., Zhang, X., Ren, S., Sun, J. Deep residual learning for image recognition (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780459, pp. 770-778. Cited 108313 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.90http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdfScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdfapplication/pdf197850https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/1/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf44c77d6c35ae81ad06e7c19101cef988MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.txtScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.txtExtracted texttext/plain2481https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/4/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.txt3ab926960b1ee42612cafc950b97ff54MD54THUMBNAILScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.jpgScopus - Document details - Deep learning architectures for the analysis and classification of brain tumors in MR images.pdf.jpgGenerated Thumbnailimage/jpeg6033https://repositorio.utb.edu.co/bitstream/20.500.12585/12333/5/Scopus%20-%20Document%20details%20-%20Deep%20learning%20architectures%20for%20the%20analysis%20and%20classification%20of%20brain%20tumors%20in%20MR%20images.pdf.jpgca4d0d46f125c7f3be1e37e5bbfedd14MD5520.500.12585/12333oai:repositorio.utb.edu.co:20.500.12585/123332023-07-22 00:17:45.175Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |