Solid-state photocatalysis for plastics abatement: A review

The COVID-19 pandemic has caused a dramatic increase in plastic wastes associated with the use of single-use masks, gloves, gowns, and other personal protective equipment (PPE). The accumulation of PPE, especially single-use masks, end up polluting environment, causing harm mainly to aquatic and ter...

Full description

Autores:
Castilla-Caballero, Deyler Rafael
Sadak, Omer
Martínez-Díaz, Jolaine
Martínez-Castro, Valentina
Colina-Márquez, Jose
Machuca-Martínez, Fiderman
Hernandez-Ramírez, Aracely
Vazquez-Rodriguez, Sofia
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11119
Acceso en línea:
https://hdl.handle.net/20.500.12585/11119
https://doi.org/10.1016/j.mssp.2022.106890
Palabra clave:
Solid-state photocatalysis
Plastic pollution
Polyolefins
TiO2
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8ff6dc313bc28a011c762cd1f875929a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11119
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Solid-state photocatalysis for plastics abatement: A review
title Solid-state photocatalysis for plastics abatement: A review
spellingShingle Solid-state photocatalysis for plastics abatement: A review
Solid-state photocatalysis
Plastic pollution
Polyolefins
TiO2
LEMB
title_short Solid-state photocatalysis for plastics abatement: A review
title_full Solid-state photocatalysis for plastics abatement: A review
title_fullStr Solid-state photocatalysis for plastics abatement: A review
title_full_unstemmed Solid-state photocatalysis for plastics abatement: A review
title_sort Solid-state photocatalysis for plastics abatement: A review
dc.creator.fl_str_mv Castilla-Caballero, Deyler Rafael
Sadak, Omer
Martínez-Díaz, Jolaine
Martínez-Castro, Valentina
Colina-Márquez, Jose
Machuca-Martínez, Fiderman
Hernandez-Ramírez, Aracely
Vazquez-Rodriguez, Sofia
dc.contributor.author.none.fl_str_mv Castilla-Caballero, Deyler Rafael
Sadak, Omer
Martínez-Díaz, Jolaine
Martínez-Castro, Valentina
Colina-Márquez, Jose
Machuca-Martínez, Fiderman
Hernandez-Ramírez, Aracely
Vazquez-Rodriguez, Sofia
dc.subject.keywords.spa.fl_str_mv Solid-state photocatalysis
Plastic pollution
Polyolefins
TiO2
topic Solid-state photocatalysis
Plastic pollution
Polyolefins
TiO2
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The COVID-19 pandemic has caused a dramatic increase in plastic wastes associated with the use of single-use masks, gloves, gowns, and other personal protective equipment (PPE). The accumulation of PPE, especially single-use masks, end up polluting environment, causing harm mainly to aquatic and terrestrial ecosystems. Due to the enormous concern about plastic pollution, many efforts are being made to develop efficient technologies to tackle it, among which solid-state photocatalysis is highlighted. Even though the outstanding results that have been obtained with the solid-state application of photocatalysis, there are fewer publications and reports on the use of it in comparison with aqueous and/or gaseous phase photocatalysis. Then, this review presents the most relevant works published on this topic and provide an in-depth analysis of solid-state photocatalysis for plastic abatement, including the incorporation of the usually hydrophilic photocatalyst into the hydrophobic plastic matrix, the common experimental procedures for evaluating its effectiveness (gravimetric, optical, spectroscopic, and mechanical methods) and the description of the intricate reaction mechanism suggested so far. The aim is increasing the awareness on this innovative topic among the academic/industrial community and advancing the research thereon.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-26T14:39:17Z
dc.date.available.none.fl_str_mv 2022-09-26T14:39:17Z
dc.date.issued.none.fl_str_mv 2022-06-17
dc.date.submitted.none.fl_str_mv 2022-09-23
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Castilla-Caballero, Deyler Rafael & Sadak, Omer & Martínez-Díaz, Jolaine & Martínez-Castro, Valentina & Colina-Márquez, Jose & Machuca-Martínez, Fiderman & Hernandez-Ramírez, Aracely & Vazquez-Rodriguez, Sofia. (2022). Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing. 149. 106890. 10.1016/j.mssp.2022.106890.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11119
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.mssp.2022.106890
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Castilla-Caballero, Deyler Rafael & Sadak, Omer & Martínez-Díaz, Jolaine & Martínez-Castro, Valentina & Colina-Márquez, Jose & Machuca-Martínez, Fiderman & Hernandez-Ramírez, Aracely & Vazquez-Rodriguez, Sofia. (2022). Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing. 149. 106890. 10.1016/j.mssp.2022.106890.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11119
https://doi.org/10.1016/j.mssp.2022.106890
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Elsevier - Materials Science in Semiconductor Processing Vol. 149 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/1/1-s2.0-S1369800122004279-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/4/1-s2.0-S1369800122004279-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/5/1-s2.0-S1369800122004279-main.pdf.jpg
bitstream.checksum.fl_str_mv aa7f6358c4f7328e8fb7c744352d1d47
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
9ea8cdcbbf6bc895fa97ce52c9ae4e59
c47f2df9ed17dcbcee98bbe3a95f67d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397590720413696
spelling Castilla-Caballero, Deyler Rafael7192723f-90f9-4dcc-93c9-b2a3c274f937Sadak, Omer200dc278-3e22-4f00-9eae-38610d1acbfcMartínez-Díaz, Jolaine6c6f9453-b87b-4fc0-8496-97d9fd6016e7Martínez-Castro, Valentina9ffb52c3-e2a9-4f37-9ae2-765c7a026660Colina-Márquez, Josebdb8e65e-0e02-428b-a05c-ae2901a02b27Machuca-Martínez, Fidermane46cf666-880a-44a1-9dc6-a5e1e6e6a664Hernandez-Ramírez, Aracely312bd580-e46a-4d52-95c5-b023a45c8d01Vazquez-Rodriguez, Sofia354f8900-2b3f-46af-8e2c-25288c08834d2022-09-26T14:39:17Z2022-09-26T14:39:17Z2022-06-172022-09-23Castilla-Caballero, Deyler Rafael & Sadak, Omer & Martínez-Díaz, Jolaine & Martínez-Castro, Valentina & Colina-Márquez, Jose & Machuca-Martínez, Fiderman & Hernandez-Ramírez, Aracely & Vazquez-Rodriguez, Sofia. (2022). Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing. 149. 106890. 10.1016/j.mssp.2022.106890.https://hdl.handle.net/20.500.12585/11119https://doi.org/10.1016/j.mssp.2022.106890Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe COVID-19 pandemic has caused a dramatic increase in plastic wastes associated with the use of single-use masks, gloves, gowns, and other personal protective equipment (PPE). The accumulation of PPE, especially single-use masks, end up polluting environment, causing harm mainly to aquatic and terrestrial ecosystems. Due to the enormous concern about plastic pollution, many efforts are being made to develop efficient technologies to tackle it, among which solid-state photocatalysis is highlighted. Even though the outstanding results that have been obtained with the solid-state application of photocatalysis, there are fewer publications and reports on the use of it in comparison with aqueous and/or gaseous phase photocatalysis. Then, this review presents the most relevant works published on this topic and provide an in-depth analysis of solid-state photocatalysis for plastic abatement, including the incorporation of the usually hydrophilic photocatalyst into the hydrophobic plastic matrix, the common experimental procedures for evaluating its effectiveness (gravimetric, optical, spectroscopic, and mechanical methods) and the description of the intricate reaction mechanism suggested so far. The aim is increasing the awareness on this innovative topic among the academic/industrial community and advancing the research thereon.21 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Elsevier - Materials Science in Semiconductor Processing Vol. 149 (2022)Solid-state photocatalysis for plastics abatement: A reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Solid-state photocatalysisPlastic pollutionPolyolefinsTiO2LEMBCartagena de IndiasY. Liang, G. Huang, X. Xin, Y. Yao, Y. Li, J. Yin, X. Li, Y. Wu, S. Gao Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: a review J. Mater. Sci. Technol., 112 (2022), pp. 239-262, 10.1016/J.JMST.2021.09.057A. Kumar, P. Raizada, A.A.P. Khan, V.H. Nguyen, Q. Van Le, A. Singh, V. Saini, R. Selvasembian, T.T. Huynh, P. Singh Phenolic compounds degradation: insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials Sci. Total Environ., 800 (2021), Article 149410, 10.1016/J.SCITOTENV.2021.149410N. Chandra Joshi, P. Gururani, S.P. Gairola Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes Review, 12 (2022), pp. 6557-6579, 10.33263/BRIAC125.65576579M.C. Zapata-Zúñiga, M.Á. Parra-Pérez, J. Alexander Álvarez-Berrio, M.C. Zapata-Zuñiga, M.A. Parra-Pérez, J.A. Álvarez-Berrio, N.I. Molina-Gómez Technologies in wastewater treatment plants for the removal of antibiotics, resistant bacteria and antibiotic resistance genes: a review of the current literature Ing. Univ., 26 (2022), p. 2022, 10.11144/JAVERIANA.IYU26.TWTPL. Saya, V. Malik, D. Gautam, G. Gambhir, Balendra, W.R. Singh, S. Hooda A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater Sci. Total Environ., 813 (2022), Article 152529, 10.1016/J.SCITOTENV.2021.152529M.A. Mueses, J. Colina-Márquez, F. Machuca-Martínez, G. Li Puma Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water Curr. Opin. Green Sustain. Chem., 30 (2021), Article 100486, 10.1016/J.COGSC.2021.100486T.A. Saleh, M. Mustaqeem, M. Khaled Water treatment technologies in removing heavy metal ions from wastewater: a review Environ. Nanotechnol. Monit. Manag., 17 (2022), Article 100617, 10.1016/J.ENMM.2021.100617A. Ahmad, S.B. Kurniawan, S.R.S. Abdullah, A.R. Othman, H.A. Hasan Contaminants of emerging concern (CECs) in aquaculture effluent: insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches Chemosphere, 290 (2022), Article 133319, 10.1016/J.CHEMOSPHERE.2021.133319A. Talaiekhozani, S. Rezania, K.H. Kim, R. Sanaye, A.M. Amani Recent advances in photocatalytic removal of organic and inorganic pollutants in air J. Clean. Prod., 278 (2021), Article 123895, 10.1016/J.JCLEPRO.2020.123895I.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling, A.G. Trovó A critical review on microplastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices Chem. Eng. J., 424 (2021), Article 130282, 10.1016/J.CEJ.2021.130282H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies Chin. J. Catal., 43 (2022), pp. 178-214, 10.1016/S1872-2067(21)63910-4R. Arriagada, F. Lagos, M. Jaime, C. Salazar Exploring consistency between stated and revealed preferences for the plastic bag ban policy in Chile Waste Manag., 139 (2022), pp. 381-392, 10.1016/J.WASMAN.2021.12.040T.R. Walker, E. McGuinty, S. Charlebois, J. Music Single-use plastic packaging in the Canadian food industry: consumer behavior and perceptions Humanit. Soc. Sci. Commun., 81 (8) (2021), pp. 1-11, 10.1057/s41599-021-00747-4P. Behuria, Ban the (plastic) bag? Explaining variation in the implementation of plastic bag bans in Rwanda, Kenya and Uganda:, Https://Doi.Org/10.1177/2399654421994836. 39 (2021) 1791–1808. https://doi.org/10.1177/2399654421994836.H. Du, S. Huang, J. Wang Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic Sci. Total Environ., 815 (2022), Article 152980, 10.1016/J.SCITOTENV.2022.152980I.A. Hassan, A. Younis, M.A. Al Ghamdi, M. Almazroui, J.M. Basahi, M.M. El-Sheekh, E.K. Abouelkhair, N.S. Haiba, M.S. Alhussaini, D. Hajjar, M.M. Abdel Wahab, D.M. El Maghraby Contamination of the marine environment in Egypt and Saudi Arabia with personal protective equipment during COVID-19 pandemic: a short focus Sci. Total Environ., 810 (2022), Article 152046, 10.1016/J.SCITOTENV.2021.152046K.P. Roberts, S.C. Phang, J.B. Williams, D.J. Hutchinson, S.E. Kolstoe, J. Bie, I.D. Williams, A.M. Stringfellow, Increased personal protective equipment litter as a result of COVID-19 measures, (n.d.). https://doi.org/10.1038/s41893-021-00824-1.R. Porta The plastics sunset and the bio-plastics sunrise 2019 Coatings, 9 (2019), p. 526, 10.3390/COATINGS9080526 526. 9R.A. Muñoz Meneses, G. Cabrera-Papamija, F. Machuca-Martínez, L.A. Rodríguez, J.E. Diosa, E. Mosquera-Vargas Plastic recycling and their use as raw material for the synthesis of carbonaceous materials Heliyon, 8 (2022), Article e09028, 10.1016/J.HELIYON.2022.E09028S. De Gisi, G. Gadaleta, G. Gorrasi, F.P. La Mantia, M. Notarnicola, A. Sorrentino The role of (bio)degradability on the management of petrochemical and bio-based plastic waste J. Environ. Manag., 310 (2022), Article 114769, 10.1016/J.JENVMAN.2022.114769S. Kane, E. Van Roijen, C. Ryan, S. Miller Reducing the environmental impacts of plastics while increasing strength: biochar fillers in biodegradable, recycled, and fossil-fuel derived plastics Compos. Part C Open Access, 8 (2022), Article 100253, 10.1016/J.JCOMC.2022.10025Z. Lin, T. Jin, T. Zou, L. Xu, B. Xi, D. Xu, J. He, L. Xiong, C. Tang, J. Peng, Y. Zhou, J. Fei Current progress on plastic/microplastic degradation: fact influences and mechanism Environ. Pollut., 304 (2022), p. 119159, 10.1016/J.ENVPOL.2022.119159X. Jiao, K. Zheng, Q. Chen, X. Li, Y. Li, W. Shao, J. Xu, J. Zhu, Y. Pan, Y. Sun, Y. Xie Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions Angew. Chem. Int. Ed., 59 (2020), pp. 15497-15501, 10.1002/ANIE.201915766T. Uekert, H. Kasap, E. Reisner Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst J. Am. Chem. Soc., 141 (2019), pp. 15201-15210, 10.1021/JACS.9B06872/SUPPL_FILE/JA9B06872_SI_001.PDFT. Uekert, C.M. Pichler, T. Schubert, E. Reisner Solar-driven reforming of solid waste for a sustainable future Nat. Sustain., 45 (4) (2020), pp. 383-391, 10.1038/s41893-020-00650-x 2020O.O. Fadare, E.D. Okoffo Covid-19 face masks: a potential source of microplastic fibers in the environment Sci. Total Environ., 737 (2020), Article 140279, 10.1016/j.scitotenv.2020.140279O. Alam, M. Billah, D. Yajie Characteristics of plastic bags and their potential environmental hazards https://doi.org/10.1016/j.resconrec.2018.01.037 (2018)K. Tennakone, C.T.K. Tilakaratne, I.R.M. Kottegoda Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films J. Photochem. Photobiol. Chem., 87 (1995), pp. 177-179, 10.1016/1010-6030(94)03980-9N.S. Allen, J.F. McKellar, G.O. Phillips, D.G.M. Wood Effect of titanium dioxide pigments on the phosphorescence from polyolefins J. Polym. Sci. Polym. Lett. Ed., 12 (1974), pp. 241-245, 10.1002/pol.1974.130120501B. Ohtani, S. Adzuma, H. Miyadzu, S. Nishimoto, T. Kagiya Photocatalytic degradation of polypropylene film by dispersed titanium dioxide particles Polym. Degrad. Stabil., 23 (1989), pp. 271-278, 10.1016/0141-3910(89)90101-8B. Ohtani, S. Adzuma, S. Nishimoto, T. Kagiya Photocatalytic degradation of polyethylene film by incorporated extra-fine particles of titanium dioxide Polym. Degrad. Stabil., 35 (1992), pp. 53-60, 10.1016/0141-3910(92)90135-RS. Cho, W. Choi Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites J. Photochem. Photobiol. Chem., 143 (2001), pp. 221-228, 10.1016/S1010-6030(01)00499-3D. Feldman Polymer weathering: photo-oxidation J. Polym. Environ., 10 (2002)U. Gesenhues Influence of titanium dioxide pigments on the photodegradation of poly(vinyl chloride) Polym. Degrad. Stabil., 68 (2000), pp. 185-196, 10.1016/S0141-3910(99)00184-6X.u. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation J. Mol. Catal. Chem., 268 (2007), pp. 101-106, 10.1016/J.MOLCATA.2006.12.012X. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation Appl. Surf. Sci., 254 (2008), pp. 1825-1829, 10.1016/J.APSUSC.2007.07.154K. Miyazaki, H. Nakatani Preparation of degradable polypropylene by an addition of poly(ethylene oxide) microcapsule containing TiO2 Polym. Degrad. Stabil., 94 (2009), pp. 2114-2120, 10.1016/j.polymdegradstab.2009.10.001W. Liang, Y. Luo, S. Song, X. Dong, X. Yu High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2 Polym. Degrad. Stabil., 98 (2013), pp. 1754-1761, 10.1016/j.polymdegradstab.2013.05.027R.T. Thomas, N. Sandhyarani Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation RSC Adv., 3 (2013), Article 14080, 10.1039/c3ra42226gY. An, J. Hou, Z. Liu, B. Peng Enhanced solid-phase photocatalytic degradation of polyethylene by TiO2-MWCNTs nanocomposites Mater. Chem. Phys., 148 (2014), pp. 387-394, 10.1016/j.matchemphys.2014.08.001X.L. García-Montelongo, A. Martínez-De La Cruz, S. Vázquez-Rodríguez, L.M. Torres-Martínez Photo-oxidative degradation of TiO2/polypropylene films Mater. Res. Bull., 51 (2014), pp. 56-62, 10.1016/j.materresbull.2013.11.040M.M. Kamrannejad, A. Hasanzadeh, N. Nosoudi, L. Mai, A.A. Babaluo, H. Ave Photocatalytic degradation of polypropylene/TiO2 nano-composites Mater. Res., 17 (2014), pp. 1039-1046, 10.1590/1516-1439.267214S.S. Ali, I.A. Qazi, M. Arshad, Z. Khan, T.C. Voice, C.T. Mehmood Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes Environ. Nanotechnol. Monit. Manag., 5 (2016), pp. 44-53, 10.1016/j.enmm.2016.01.001P.A. Zapata, A. Zenteno, N. Amigó, F.M. Rabagliati, F. Sepúlveda, F. Catalina, T. Corrales Study on the photodegradation of nanocomposites based on polypropylene and TiO2 nanotubes Polym. Degrad. Stabil., 133 (2016), pp. 101-107, 10.1016/j.polymdegradstab.2016.08.008K.A. Bustos-Torres, S. Vazquez-Rodriguez, A.M. de la Cruz, S. Sepulveda-Guzman, R. Benavides, R. Lopez-Gonzalez, L.M. Torres-Martínez Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites Mater. Sci. Semicond. Process., 68 (2017), pp. 217-225, 10.1016/j.mssp.2017.06.023R. Verma, S. Singh, M.K. Dalai, M. Saravanan, V.V. Agrawal, A.K. Srivastava Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation Mater. Des., 133 (2017), pp. 10-18, 10.1016/j.matdes.2017.07.042A. Prasert, S. Sontikaew, D. Sriprapai, S. Chuangchote Polypropylene/ZnO nanocomposites: mechanical properties, photocatalytic dye degradation, and antibacterial property Materials, 13 (2020), pp. 1-16Y. Zhao, F. Zhang, J. Zhang, K. Zou, J. Zhang, C. Chen, M. Long, Q. Zhang, J. Wang, C. Zheng, W. Shou, D. Wang Preparation of composite photocatalyst with tunable and self-indicating delayed onset of performance and its application in polyethylene degradation Appl. Catal. B Environ., 286 (2021), 10.1016/j.apcatb.2021.119918 119918D. Wang, P. Zhang, M. Yan, L. Jin, X. Du, F. Zhang, Q. Wang, B. Ni, C. Chen Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments Polym. Degrad. Stabil., 195 (2022), Article 109806, 10.1016/j.polymdegradstab.2021.109806M. Alizadeh Sani, M. Maleki, H. Eghbaljoo-Gharehgheshlaghi, A. Khezerlou, E. Mohammadian, Q. Liu, S.M. Jafari Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films Adv. Colloid Interface Sci., 300 (2022), Article 102593, 10.1016/J.CIS.2021.102593S. Lotfi, K. Fischer, A. Schulze, A.I. Schäfer Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process Nat. Nanotechnol. (2022), 10.1038/s41565-022-01074-8R.T. Thomas, V. Nair, N. Sandhyarani TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation Colloids Surfaces A Physicochem. Eng. Asp., 422 (2013), pp. 1-9, 10.1016/j.colsurfa.2013.01.017J. Alvarado, G. Acosta, F. Perez Study of the effect of the dispersion of functionalized nanoparticles TiO2 with photocatalytic activity in LDPE Polym. Degrad. Stabil., 134 (2016), pp. 376-382, 10.1016/j.polymdegradstab.2016.11.009K. Rajakumar, V. Sarasvathy, A. Thamarai Chelvan, R. Chitra, C.T. Vijayakumar Natural weathering studies of polypropylene J. Polym. Environ., 17 (2009), pp. 191-202, 10.1007/s10924-009-0138-7H. Zhao, R.K.Y. Li A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites Polymer (Guildf), 47 (2006), pp. 3207-3217, 10.1016/J.POLYMER.2006.02.089N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo Polymer biodegradation: mechanisms and estimation techniques - a review Chemosphere, 73 (2008), pp. 429-442, 10.1016/j.chemosphere.2008.06.064P. Nguyen-Tri, P. Ghassemi, P. Carriere, S. Nanda, A.A. Assadi, D.D. Nguyen Recent applications of advanced atomic force microscopy in polymer science: a review Polymers, 12 (2020), pp. 1-28, 10.3390/POLYM12051142R. Shanti, A.N. Hadi, Y.S. Salim, S.Y. Chee, S. Ramesh, K. Ramesh Degradation of ultra-high molecular weight poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation RSC Adv., 7 (2017), pp. 112-120, 10.1039/c6ra25313jP. Nguyen-Tri, R.E. Prud’homme Nanoscale analysis of the photodegradation of polyester fibers by AFM-IR J. Photochem. Photobiol. Chem., 371 (2019), pp. 196-204, 10.1016/j.jphotochem.2018.11.017M. Niaounakis Biopolymers: Applications and Trends (2015), 10.1016/c2014-0-00936-7R.A. Rahman (Ed.), Kinetic Modeling for Environmental Systems (2019), 10.5772/intechopen.79240S. Carroccio, P. Rizzarelli, C. Puglisi, G. Montaudo MALDI investigation of photooxidation in aliphatic polyesters: poly(butylene succinate) Macromolecules, 37 (2004), pp. 6576-6586, 10.1021/ma049633eP. Tasakorn, W. Amatyakul Photochemical reduction of molecular weight and number of double bonds in natural rubber film Kor. J. Chem. Eng., 25 (2008), pp. 1532-1538, 10.1007/s11814-008-0252-6T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods Environ. Chem. Lett., 17 (2019), pp. 1341-1346, 10.1007/s10311-019-00859-zZ. Ouyang, Y. Yang, C. Zhang, S. Zhu, L. Qin, W. Wang, D. He, Y. Zhou, H. Luo, F. Qin Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals J. Mater. Chem. A., 9 (2021), pp. 13402-13441, 10.1039/d0ta12465fO. Agboola, R. Sadiku, T. Mokrani, I. Amer, O. Imoru Polyolefins and the environment Polyolefin Fibres (2017), pp. 89-133, 10.1016/B978-0-08-101132-4.00004-7Y. Zhong, H. Chen, X. Chen, B. Zhang, W. Chen, W. Lu Abiotic degradation behavior of polyacrylonitrile-based material filled with a composite of TiO2 and g-C3N4 under solar illumination Chemosphere, 299 (2022), Article 134375, 10.1016/J.CHEMOSPHERE.2022.134375W. Zhang, J.W. Rhim Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films Food Packag. Shelf Life, 31 (2022), Article 100806, 10.1016/J.FPSL.2021.100806http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL1-s2.0-S1369800122004279-main.pdf1-s2.0-S1369800122004279-main.pdfapplication/pdf17483709https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/1/1-s2.0-S1369800122004279-main.pdfaa7f6358c4f7328e8fb7c744352d1d47MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT1-s2.0-S1369800122004279-main.pdf.txt1-s2.0-S1369800122004279-main.pdf.txtExtracted texttext/plain129412https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/4/1-s2.0-S1369800122004279-main.pdf.txt9ea8cdcbbf6bc895fa97ce52c9ae4e59MD54THUMBNAIL1-s2.0-S1369800122004279-main.pdf.jpg1-s2.0-S1369800122004279-main.pdf.jpgGenerated Thumbnailimage/jpeg8022https://repositorio.utb.edu.co/bitstream/20.500.12585/11119/5/1-s2.0-S1369800122004279-main.pdf.jpgc47f2df9ed17dcbcee98bbe3a95f67d9MD5520.500.12585/11119oai:repositorio.utb.edu.co:20.500.12585/111192022-09-27 00:18:34.748Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=