Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9191
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9191
- Palabra clave:
- Author profiling
Bots profiling
Computational linguistic
Gender profiling
Sociolinguistic
User profiling
Character recognition
Classification (of information)
Computational linguistics
Learning algorithms
Linguistics
Machine learning
Social aspects
Social networking (online)
Social sciences computing
Author profiling
Bots profiling
Gender profiling
Sociolinguistic
User profiling
Botnet
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_8fa9a8e5b2ac17958da18cda8b1602bc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9191 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
title |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
spellingShingle |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 Author profiling Bots profiling Computational linguistic Gender profiling Sociolinguistic User profiling Character recognition Classification (of information) Computational linguistics Learning algorithms Linguistics Machine learning Social aspects Social networking (online) Social sciences computing Author profiling Bots profiling Gender profiling Sociolinguistic User profiling Botnet |
title_short |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
title_full |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
title_fullStr |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
title_full_unstemmed |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
title_sort |
Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019 |
dc.contributor.advisor.none.fl_str_mv |
|
dc.contributor.editor.none.fl_str_mv |
Cappellato L. Ferro N. Losada D.E. Muller H. |
dc.subject.keywords.none.fl_str_mv |
Author profiling Bots profiling Computational linguistic Gender profiling Sociolinguistic User profiling Character recognition Classification (of information) Computational linguistics Learning algorithms Linguistics Machine learning Social aspects Social networking (online) Social sciences computing Author profiling Bots profiling Gender profiling Sociolinguistic User profiling Botnet |
topic |
Author profiling Bots profiling Computational linguistic Gender profiling Sociolinguistic User profiling Character recognition Classification (of information) Computational linguistics Learning algorithms Linguistics Machine learning Social aspects Social networking (online) Social sciences computing Author profiling Bots profiling Gender profiling Sociolinguistic User profiling Botnet |
description |
Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source of information that can be used to identify different aspects of its authors, not being able to recognize which users are truly humans and which are not, is a big drawback. In this work, we describe the properties of our multilingual classification model submitted for PAN2019 that is able to recognize bots from humans, and females from males. This solution extracted 18 features from the user's posts and applying a machine learning algorithm obtained good performance results. © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:10Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:10Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
CEUR Workshop Proceedings; Vol. 2380 |
dc.identifier.issn.none.fl_str_mv |
16130073 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9191 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57202285682 57194828933 57191078469 8738428200 57203852380 56986551200 |
identifier_str_mv |
CEUR Workshop Proceedings; Vol. 2380 16130073 Universidad Tecnológica de Bolívar Repositorio UTB 57202285682 57194828933 57191078469 8738428200 57203852380 56986551200 |
url |
https://hdl.handle.net/20.500.12585/9191 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
9 September 2019 through 12 September 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
CEUR-WS |
publisher.none.fl_str_mv |
CEUR-WS |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510020&partnerID=40&md5=fcc69ef587023e644e71d9b5f6e5be01 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
20th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9191/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021598240309248 |
spelling |
Cappellato L.Ferro N.Losada D.E.Muller H.Puertas E.Moreno-Sandoval L.G.Plaza-Del-Arco F.M.Alvarado‑Valencia, Jorge AndresPomares-Quimbaya A.Alfonso Ureña-López L.2020-03-26T16:33:10Z2020-03-26T16:33:10Z2019CEUR Workshop Proceedings; Vol. 238016130073https://hdl.handle.net/20.500.12585/9191Universidad Tecnológica de BolívarRepositorio UTB57202285682571948289335719107846987384282005720385238056986551200Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source of information that can be used to identify different aspects of its authors, not being able to recognize which users are truly humans and which are not, is a big drawback. In this work, we describe the properties of our multilingual classification model submitted for PAN2019 that is able to recognize bots from humans, and females from males. This solution extracted 18 features from the user's posts and applying a machine learning algorithm obtained good performance results. © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).Recurso electrónicoapplication/pdfengCEUR-WShttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510020&partnerID=40&md5=fcc69ef587023e644e71d9b5f6e5be0120th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2019Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAuthor profilingBots profilingComputational linguisticGender profilingSociolinguisticUser profilingCharacter recognitionClassification (of information)Computational linguisticsLearning algorithmsLinguisticsMachine learningSocial aspectsSocial networking (online)Social sciences computingAuthor profilingBots profilingGender profilingSociolinguisticUser profilingBotnet9 September 2019 through 12 September 2019Berger, J.M., Morgan, J., The isis twitter census: Defining and describing the population of isis supporters on twitter (2015) The Brookings Project on US Relations with the Islamic World, 3 (20), pp. 4-11Cai, C., Li, L., Zengi, D., Behavior enhanced deep bot detection in social media (2017) 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 128-130Clark, E.M., Williams, J.R., Jones, C.A., Galbraith, R.A., Danforth, C.M., Dodds, P.S., Sifting robotic from organic text: A natural language approach for detecting automation on twitter (2016) Journal of Computational Science, 16, pp. 1-7Daelemans, W., Kestemont, M., Manjavancas, E., Potthast, M., Rangel, F., Rosso, P., Specht, G., Zangerle, E., Overview of PAN 2019: Author profiling, celebrity profiling, cross-domain authorship attribution and style change detection (2019) Proceedings of the Tenth International Conference of the CLEF Association (CLEF 2019), , Crestani, F., Braschler, M., Savoy, J., Rauber, A., Müller, H., Losada, D., Heinatz, G., Cappellato, L., Ferro, N. eds Springer SepDavis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F., Botornot: A system to evaluate social bots (2016) Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273-274. , International World Wide Web Conferences Steering CommitteeDickerson, J.P., Kagan, V., Subrahmanian, V., Using sentiment to detect bots on twitter: Are humans more opinionated than bots? (2014) Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 620-627. , IEEE PressFerrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A., The rise of social bots (2016) Communications of the ACM, 59 (7), pp. 96-104Krzywicki, A., Wobcke, W., Bain, M., Martinez, J.C., Compton, P., Data mining for building knowledge bases: Techniques, architectures and applications (2016) The Knowledge Engineering Review, 31 (2), pp. 97-123Potthast, M., Gollub, T., Wiegmann, M., Stein, B., TIRA integrated research architecture (2019) Information Retrieval Evaluation in a Changing World - Lessons Learned from 20 Years of CLEF, , Ferro, N., Peters, C. eds SpringerRangel, F., Franco-Salvador, M., Rosso, P., A low dimensionality representation for language variety identification (2016) International Conference on Intelligent Text Processing and Computational Linguistics, pp. 156-169. , SpringerRangel, F., Rosso, P., Overview of the 7th author profiling task at Pan 2019: Bots and gender profiling (2019) CLEF 2019 Labs and Workshops, Notebook Papers, , Cappellato, L., Ferro, N., Losada, D., Müller, H. eds CEUR-WS.org SepRatkiewicz, J., Conover, M.D., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F.M., Detecting and tracking political abuse in social media (2011) Fifth International AAAI Conference on Weblogs and Social MediaVarol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A., Online human-bot interactions: Detection, estimation, and characterization (2017) Eleventh International AAAI Conference on Web and Social MediaVarol, O., Ferrara, E., Menczer, F., Flammini, A., Early detection of promoted campaigns on social media (2017) EPJ Data Science, 6 (1), p. 13Yang, K.C., Varol, O., Davis, C.A., Ferrara, E., Flammini, A., Menczer, F., (2019) Arming the Public with Ai to Counter Social Bots, , arXiv preprinthttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9191/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9191oai:repositorio.utb.edu.co:20.500.12585/91912023-05-25 10:23:46.307Repositorio Institucional UTBrepositorioutb@utb.edu.co |