Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019

Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9191
Acceso en línea:
https://hdl.handle.net/20.500.12585/9191
Palabra clave:
Author profiling
Bots profiling
Computational linguistic
Gender profiling
Sociolinguistic
User profiling
Character recognition
Classification (of information)
Computational linguistics
Learning algorithms
Linguistics
Machine learning
Social aspects
Social networking (online)
Social sciences computing
Author profiling
Bots profiling
Gender profiling
Sociolinguistic
User profiling
Botnet
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8fa9a8e5b2ac17958da18cda8b1602bc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9191
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
title Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
spellingShingle Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
Author profiling
Bots profiling
Computational linguistic
Gender profiling
Sociolinguistic
User profiling
Character recognition
Classification (of information)
Computational linguistics
Learning algorithms
Linguistics
Machine learning
Social aspects
Social networking (online)
Social sciences computing
Author profiling
Bots profiling
Gender profiling
Sociolinguistic
User profiling
Botnet
title_short Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
title_full Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
title_fullStr Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
title_full_unstemmed Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
title_sort Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019
dc.contributor.advisor.none.fl_str_mv
dc.contributor.editor.none.fl_str_mv Cappellato L.
Ferro N.
Losada D.E.
Muller H.
dc.subject.keywords.none.fl_str_mv Author profiling
Bots profiling
Computational linguistic
Gender profiling
Sociolinguistic
User profiling
Character recognition
Classification (of information)
Computational linguistics
Learning algorithms
Linguistics
Machine learning
Social aspects
Social networking (online)
Social sciences computing
Author profiling
Bots profiling
Gender profiling
Sociolinguistic
User profiling
Botnet
topic Author profiling
Bots profiling
Computational linguistic
Gender profiling
Sociolinguistic
User profiling
Character recognition
Classification (of information)
Computational linguistics
Learning algorithms
Linguistics
Machine learning
Social aspects
Social networking (online)
Social sciences computing
Author profiling
Bots profiling
Gender profiling
Sociolinguistic
User profiling
Botnet
description Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source of information that can be used to identify different aspects of its authors, not being able to recognize which users are truly humans and which are not, is a big drawback. In this work, we describe the properties of our multilingual classification model submitted for PAN2019 that is able to recognize bots from humans, and females from males. This solution extracted 18 features from the user's posts and applying a machine learning algorithm obtained good performance results. © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:10Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:10Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv CEUR Workshop Proceedings; Vol. 2380
dc.identifier.issn.none.fl_str_mv 16130073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9191
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57202285682
57194828933
57191078469
8738428200
57203852380
56986551200
identifier_str_mv CEUR Workshop Proceedings; Vol. 2380
16130073
Universidad Tecnológica de Bolívar
Repositorio UTB
57202285682
57194828933
57191078469
8738428200
57203852380
56986551200
url https://hdl.handle.net/20.500.12585/9191
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 9 September 2019 through 12 September 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CEUR-WS
publisher.none.fl_str_mv CEUR-WS
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510020&partnerID=40&md5=fcc69ef587023e644e71d9b5f6e5be01
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 20th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9191/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021598240309248
spelling Cappellato L.Ferro N.Losada D.E.Muller H.Puertas E.Moreno-Sandoval L.G.Plaza-Del-Arco F.M.Alvarado‑Valencia, Jorge AndresPomares-Quimbaya A.Alfonso Ureña-López L.2020-03-26T16:33:10Z2020-03-26T16:33:10Z2019CEUR Workshop Proceedings; Vol. 238016130073https://hdl.handle.net/20.500.12585/9191Universidad Tecnológica de BolívarRepositorio UTB57202285682571948289335719107846987384282005720385238056986551200Unfortunately, in social networks, software bots or just bots are becoming more and more common because malicious people have seen their usefulness to spread false messages, spread rumors and even manipulate public opinion. Even though the text generated by users in social networks is a rich source of information that can be used to identify different aspects of its authors, not being able to recognize which users are truly humans and which are not, is a big drawback. In this work, we describe the properties of our multilingual classification model submitted for PAN2019 that is able to recognize bots from humans, and females from males. This solution extracted 18 features from the user's posts and applying a machine learning algorithm obtained good performance results. © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).Recurso electrónicoapplication/pdfengCEUR-WShttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070510020&partnerID=40&md5=fcc69ef587023e644e71d9b5f6e5be0120th Working Notes of CLEF Conference and Labs of the Evaluation Forum, CLEF 2019Bots and gender profiling on twitter using sociolinguistic features notebook for PAN at CLEF 2019info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAuthor profilingBots profilingComputational linguisticGender profilingSociolinguisticUser profilingCharacter recognitionClassification (of information)Computational linguisticsLearning algorithmsLinguisticsMachine learningSocial aspectsSocial networking (online)Social sciences computingAuthor profilingBots profilingGender profilingSociolinguisticUser profilingBotnet9 September 2019 through 12 September 2019Berger, J.M., Morgan, J., The isis twitter census: Defining and describing the population of isis supporters on twitter (2015) The Brookings Project on US Relations with the Islamic World, 3 (20), pp. 4-11Cai, C., Li, L., Zengi, D., Behavior enhanced deep bot detection in social media (2017) 2017 IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 128-130Clark, E.M., Williams, J.R., Jones, C.A., Galbraith, R.A., Danforth, C.M., Dodds, P.S., Sifting robotic from organic text: A natural language approach for detecting automation on twitter (2016) Journal of Computational Science, 16, pp. 1-7Daelemans, W., Kestemont, M., Manjavancas, E., Potthast, M., Rangel, F., Rosso, P., Specht, G., Zangerle, E., Overview of PAN 2019: Author profiling, celebrity profiling, cross-domain authorship attribution and style change detection (2019) Proceedings of the Tenth International Conference of the CLEF Association (CLEF 2019), , Crestani, F., Braschler, M., Savoy, J., Rauber, A., Müller, H., Losada, D., Heinatz, G., Cappellato, L., Ferro, N. eds Springer SepDavis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F., Botornot: A system to evaluate social bots (2016) Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273-274. , International World Wide Web Conferences Steering CommitteeDickerson, J.P., Kagan, V., Subrahmanian, V., Using sentiment to detect bots on twitter: Are humans more opinionated than bots? (2014) Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 620-627. , IEEE PressFerrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A., The rise of social bots (2016) Communications of the ACM, 59 (7), pp. 96-104Krzywicki, A., Wobcke, W., Bain, M., Martinez, J.C., Compton, P., Data mining for building knowledge bases: Techniques, architectures and applications (2016) The Knowledge Engineering Review, 31 (2), pp. 97-123Potthast, M., Gollub, T., Wiegmann, M., Stein, B., TIRA integrated research architecture (2019) Information Retrieval Evaluation in a Changing World - Lessons Learned from 20 Years of CLEF, , Ferro, N., Peters, C. eds SpringerRangel, F., Franco-Salvador, M., Rosso, P., A low dimensionality representation for language variety identification (2016) International Conference on Intelligent Text Processing and Computational Linguistics, pp. 156-169. , SpringerRangel, F., Rosso, P., Overview of the 7th author profiling task at Pan 2019: Bots and gender profiling (2019) CLEF 2019 Labs and Workshops, Notebook Papers, , Cappellato, L., Ferro, N., Losada, D., Müller, H. eds CEUR-WS.org SepRatkiewicz, J., Conover, M.D., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F.M., Detecting and tracking political abuse in social media (2011) Fifth International AAAI Conference on Weblogs and Social MediaVarol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A., Online human-bot interactions: Detection, estimation, and characterization (2017) Eleventh International AAAI Conference on Web and Social MediaVarol, O., Ferrara, E., Menczer, F., Flammini, A., Early detection of promoted campaigns on social media (2017) EPJ Data Science, 6 (1), p. 13Yang, K.C., Varol, O., Davis, C.A., Ferrara, E., Flammini, A., Menczer, F., (2019) Arming the Public with Ai to Counter Social Bots, , arXiv preprinthttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9191/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9191oai:repositorio.utb.edu.co:20.500.12585/91912023-05-25 10:23:46.307Repositorio Institucional UTBrepositorioutb@utb.edu.co