Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
The design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economi...
- Autores:
-
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Giral-Ramírez, Diego Armando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12395
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12395
- Palabra clave:
- Microgrid;
DC-DC Converter;
Electric Potential
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_8ef39e8ae5367f5d67e79897aad8b91a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12395 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
title |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
spellingShingle |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology Microgrid; DC-DC Converter; Electric Potential LEMB |
title_short |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
title_full |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
title_fullStr |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
title_full_unstemmed |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
title_sort |
Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Giral-Ramírez, Diego Armando |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Giral-Ramírez, Diego Armando |
dc.subject.keywords.spa.fl_str_mv |
Microgrid; DC-DC Converter; Electric Potential |
topic |
Microgrid; DC-DC Converter; Electric Potential LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economic, technical, and environmental objective functions subject to typical constraints regarding power balance equilibrium, thermal conductor capabilities, generation source capacities, and voltage regulation constraints, among others, using a nonlinear programming (NLP) model. The main characteristic of this NLP formulation of the EMS for PV plants is that it is a nonconvex optimization problem owing to the product of variables in the power balance constraint. To ensure an effective solution to this NLP problem, a linear approximation of the power balance constraints using the McCormick equivalent for the product of two variables is proposed. In addition, to eliminate the error introduced by the linearization method, an iterative solution methodology (ISM) is proposed. To solve the multi-objective optimization problem, the weighted optimization method is implemented for each pair of objective functions in conflict, with the main advantage that in this extreme the Pareto front has the optimal global solution for the single-objective function optimization approach. Numerical results in the monopolar version of the IEEE 33-bus grid demonstrated that the proposed ISM reaches the optimal global solution for each one of the objective functions under analysis. It demonstrated that the convex optimization theory is more effective in the EMS design when compared with multiple combinatorial optimization methods. © 2023 by the authors. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T20:50:46Z |
dc.date.available.none.fl_str_mv |
2023-07-21T20:50:46Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12395 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en16020976 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976. 10.3390/en16020976 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12395 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
20 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Energies |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/1/energies-16-00976-v2.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/4/energies-16-00976-v2.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/5/energies-16-00976-v2.pdf.jpg |
bitstream.checksum.fl_str_mv |
db7760981d6fafe130ad190d7706864f 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 220be25f1c510eadd3f64dd8cf8d0dc1 48ab11a29d4bfc1096fbbe76fb6dfdbc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021746750128128 |
spelling |
Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f52023-07-21T20:50:46Z2023-07-21T20:50:46Z20232023Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976.https://hdl.handle.net/20.500.12585/1239510.3390/en16020976Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economic, technical, and environmental objective functions subject to typical constraints regarding power balance equilibrium, thermal conductor capabilities, generation source capacities, and voltage regulation constraints, among others, using a nonlinear programming (NLP) model. The main characteristic of this NLP formulation of the EMS for PV plants is that it is a nonconvex optimization problem owing to the product of variables in the power balance constraint. To ensure an effective solution to this NLP problem, a linear approximation of the power balance constraints using the McCormick equivalent for the product of two variables is proposed. In addition, to eliminate the error introduced by the linearization method, an iterative solution methodology (ISM) is proposed. To solve the multi-objective optimization problem, the weighted optimization method is implemented for each pair of objective functions in conflict, with the main advantage that in this extreme the Pareto front has the optimal global solution for the single-objective function optimization approach. Numerical results in the monopolar version of the IEEE 33-bus grid demonstrated that the proposed ISM reaches the optimal global solution for each one of the objective functions under analysis. It demonstrated that the convex optimization theory is more effective in the EMS design when compared with multiple combinatorial optimization methods. © 2023 by the authors.20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesMulti-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodologyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Xu, Y., Hu, Z., Ma, T. Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest (2022) Energies, 15 (19), art. no. 7261. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197261Gan, L., Low, S.H. Optimal power flow in direct current networks (2014) IEEE Transactions on Power Systems, 29 (6), art. no. 6803964, pp. 2892-2904. Cited 106 times. doi: 10.1109/TPWRS.2014.2313514Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Ashok Kumar, A., Amutha Prabha, N. A comprehensive review of DC microgrid in market segments and control technique (2022) Heliyon, 8 (11), art. no. e11694. Cited 5 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2022.e11694Abou El-Ela, A.A., Mosalam, H.A., Amer, R.A. Optimal control design and management of complete DC- renewable energy microgrid system (Open Access) (2023) Ain Shams Engineering Journal, 14 (5), art. no. 101964. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2022.101964Sabzian-Molaee, Z., Rokrok, E., Doostizadeh, M. An optimal planning model for AC-DC distribution systems considering the converter lifetime (Open Access) (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107911. Cited 4 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107911Grisales-Noreña, L.F., Ocampo-Toro, J.A., Rosales-Muñoz, A.A., Cortes-Caicedo, B., Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices (2022) Sustainability (Switzerland), 14 (24), art. no. 16429. Cited 6 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su142416429Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Alcalá, G., Hernandez-Escobedo, Q. Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators (Open Access) (2020) Symmetry, 12 (2), art. no. 322. Cited 29 times. https://res.mdpi.com/d_attachment/symmetry/symmetry-12-00322/article_deploy/symmetry-12-00322.pdf doi: 10.3390/sym12020322Iris, Ç., Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty (Open Access) (2021) Omega (United Kingdom), 103, art. no. 102445. Cited 77 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description doi: 10.1016/j.omega.2021.102445Iris, Ç., Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems (Open Access) (2019) Renewable and Sustainable Energy Reviews, 112, pp. 170-182. Cited 209 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.04.069Ferreira, J.C., Afonso, J.A., Monteiro, V., Afonso, J.L. An energy management platform for public buildings (Open Access) (2018) Electronics (Switzerland), 7 (11), art. no. 294. Cited 21 times. https://www.mdpi.com/2079-9292/7/11/294/pdf doi: 10.3390/electronics7110294Mariano-Hernández, D., Hernández-Callejo, L., Zorita-Lamadrid, A., Duque-Pérez, O., Santos García, F. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis (Open Access) (2021) Journal of Building Engineering, 33, art. no. 101692. Cited 214 times. http://www.journals.elsevier.com/journal-of-building-engineering/ doi: 10.1016/j.jobe.2020.101692Hohne, P.A., Kusakana, K., Numbi, B.P. Improving energy efficiency of thermal processes in healthcare institutions: A review on the latest sustainable energy management strategies (Open Access) (2020) Energies, 13 (3), art. no. 569. Cited 12 times. https://www.mdpi.com/1996-1073/13/3 doi: 10.3390/en13030569Pereira, F., Caetano, N.S., Felgueiras, C. Increasing energy efficiency with a smart farm—An economic evaluation (Open Access) (2022) Energy Reports, 8, pp. 454-461. Cited 5 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2022.01.074Zhuo, Z., Zhang, N., Kang, C., Dong, R., Liu, Y. Optimal Operation of Hybrid AC/DC Distribution Network with High Penetrated Renewable Energy (2018) IEEE Power and Energy Society General Meeting, 2018-August, art. no. 8585802. Cited 5 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153867703-2 doi: 10.1109/PESGM.2018.8585802Gomez, A.L., Arredondo, C.A., Luna, M.A., Villegas, S., Hernandez, J. Regulating the integration of renewable energy in Colombia: Implications of Law 1715 of 2014 (Open Access) (2016) Conference Record of the IEEE Photovoltaic Specialists Conference, 2016-November, art. no. 7750280, pp. 3317-3321. Cited 3 times. ISBN: 978-150902724-8 doi: 10.1109/PVSC.2016.7750280Rodríguez-Urrego, D., Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects (Open Access) (2018) Renewable and Sustainable Energy Reviews, 92, pp. 160-170. Cited 48 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.04.065Montoya, O.D., Gil-González, W., Molina-Cabrera, A. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources (Open Access) (2021) DYNA (Colombia), 88 (217), pp. 178-184. Cited 7 times. http://www.scielo.org.co/pdf/dyna/v88n217/2346-2183-dyna-88-217-178.pdf doi: 10.15446/dyna.v88n217.93099Ferro, G., Robba, M., D'Achiardi, D., Haider, R., Annaswamy, A.M. A distributed approach to the optimal power flow problem for unbalanced and mesh networks (Open Access) (2020) IFAC-PapersOnLine, 53 (2), pp. 13287-13292. Cited 8 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2020.12.159Javadi, M.S., Gouveia, C.S., Carvalho, L.M., Silva, R. Optimal Power Flow Solution for Distribution Networks using Quadratically Constrained Programming and McCormick Relaxation Technique (2021) 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9584464 ISBN: 978-166543612-0 doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584627Soroudi, A. Power system optimization modeling in GAMS (Open Access) (2017) Power System Optimization Modeling in GAMS, pp. 1-295. Cited 277 times. http://www.springer.com/in/book/9783319623498 ISBN: 978-331962350-4; 978-331962349-8 doi: 10.1007/978-3-319-62350-4Montoya, O.D., Molina-Cabrera, A., Hernández, J.C. A comparative study on power flow methods applied to AC distribution networks with single-phase representation (2021) Electronics (Switzerland), 10 (21), art. no. 2573. Cited 7 times. https://www.mdpi.com/2079-9292/10/21/2573/pdf doi: 10.3390/electronics10212573http://purl.org/coar/resource_type/c_6501ORIGINALenergies-16-00976-v2.pdfenergies-16-00976-v2.pdfapplication/pdf641087https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/1/energies-16-00976-v2.pdfdb7760981d6fafe130ad190d7706864fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-16-00976-v2.pdf.txtenergies-16-00976-v2.pdf.txtExtracted texttext/plain60339https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/4/energies-16-00976-v2.pdf.txt220be25f1c510eadd3f64dd8cf8d0dc1MD54THUMBNAILenergies-16-00976-v2.pdf.jpgenergies-16-00976-v2.pdf.jpgGenerated Thumbnailimage/jpeg8192https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/5/energies-16-00976-v2.pdf.jpg48ab11a29d4bfc1096fbbe76fb6dfdbcMD5520.500.12585/12395oai:repositorio.utb.edu.co:20.500.12585/123952023-07-22 00:18:26.695Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |