Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology

The design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economi...

Full description

Autores:
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Giral-Ramírez, Diego Armando
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12395
Acceso en línea:
https://hdl.handle.net/20.500.12585/12395
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8ef39e8ae5367f5d67e79897aad8b91a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12395
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
title Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
spellingShingle Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
title_full Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
title_fullStr Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
title_full_unstemmed Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
title_sort Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology
dc.creator.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Giral-Ramírez, Diego Armando
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Giral-Ramírez, Diego Armando
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economic, technical, and environmental objective functions subject to typical constraints regarding power balance equilibrium, thermal conductor capabilities, generation source capacities, and voltage regulation constraints, among others, using a nonlinear programming (NLP) model. The main characteristic of this NLP formulation of the EMS for PV plants is that it is a nonconvex optimization problem owing to the product of variables in the power balance constraint. To ensure an effective solution to this NLP problem, a linear approximation of the power balance constraints using the McCormick equivalent for the product of two variables is proposed. In addition, to eliminate the error introduced by the linearization method, an iterative solution methodology (ISM) is proposed. To solve the multi-objective optimization problem, the weighted optimization method is implemented for each pair of objective functions in conflict, with the main advantage that in this extreme the Pareto front has the optimal global solution for the single-objective function optimization approach. Numerical results in the monopolar version of the IEEE 33-bus grid demonstrated that the proposed ISM reaches the optimal global solution for each one of the objective functions under analysis. It demonstrated that the convex optimization theory is more effective in the EMS design when compared with multiple combinatorial optimization methods. © 2023 by the authors.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:50:46Z
dc.date.available.none.fl_str_mv 2023-07-21T20:50:46Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12395
dc.identifier.doi.none.fl_str_mv 10.3390/en16020976
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976.
10.3390/en16020976
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12395
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/1/energies-16-00976-v2.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/4/energies-16-00976-v2.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/5/energies-16-00976-v2.pdf.jpg
bitstream.checksum.fl_str_mv db7760981d6fafe130ad190d7706864f
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
220be25f1c510eadd3f64dd8cf8d0dc1
48ab11a29d4bfc1096fbbe76fb6dfdbc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021746750128128
spelling Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f52023-07-21T20:50:46Z2023-07-21T20:50:46Z20232023Montoya, O. D., Grisales-Noreña, L. F., & Giral-Ramírez, D. A. (2023). Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies, 16(2), 976.https://hdl.handle.net/20.500.12585/1239510.3390/en16020976Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe design of an efficient energy management system (EMS) for monopolar DC networks with high penetration of photovoltaic generation plants is addressed in this research through a convex optimization point of view. The EMS is formulated as a multi-objective optimization problem that involves economic, technical, and environmental objective functions subject to typical constraints regarding power balance equilibrium, thermal conductor capabilities, generation source capacities, and voltage regulation constraints, among others, using a nonlinear programming (NLP) model. The main characteristic of this NLP formulation of the EMS for PV plants is that it is a nonconvex optimization problem owing to the product of variables in the power balance constraint. To ensure an effective solution to this NLP problem, a linear approximation of the power balance constraints using the McCormick equivalent for the product of two variables is proposed. In addition, to eliminate the error introduced by the linearization method, an iterative solution methodology (ISM) is proposed. To solve the multi-objective optimization problem, the weighted optimization method is implemented for each pair of objective functions in conflict, with the main advantage that in this extreme the Pareto front has the optimal global solution for the single-objective function optimization approach. Numerical results in the monopolar version of the IEEE 33-bus grid demonstrated that the proposed ISM reaches the optimal global solution for each one of the objective functions under analysis. It demonstrated that the convex optimization theory is more effective in the EMS design when compared with multiple combinatorial optimization methods. © 2023 by the authors.20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2EnergiesMulti-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodologyinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Xu, Y., Hu, Z., Ma, T. Monopolar Grounding Fault Location Method of DC Distribution Network Based on Improved ReliefF and Weighted Random Forest (2022) Energies, 15 (19), art. no. 7261. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197261Gan, L., Low, S.H. Optimal power flow in direct current networks (2014) IEEE Transactions on Power Systems, 29 (6), art. no. 6803964, pp. 2892-2904. Cited 106 times. doi: 10.1109/TPWRS.2014.2313514Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Ashok Kumar, A., Amutha Prabha, N. A comprehensive review of DC microgrid in market segments and control technique (2022) Heliyon, 8 (11), art. no. e11694. Cited 5 times. http://www.journals.elsevier.com/heliyon/ doi: 10.1016/j.heliyon.2022.e11694Abou El-Ela, A.A., Mosalam, H.A., Amer, R.A. Optimal control design and management of complete DC- renewable energy microgrid system (Open Access) (2023) Ain Shams Engineering Journal, 14 (5), art. no. 101964. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2022.101964Sabzian-Molaee, Z., Rokrok, E., Doostizadeh, M. An optimal planning model for AC-DC distribution systems considering the converter lifetime (Open Access) (2022) International Journal of Electrical Power and Energy Systems, 138, art. no. 107911. Cited 4 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2021.107911Grisales-Noreña, L.F., Ocampo-Toro, J.A., Rosales-Muñoz, A.A., Cortes-Caicedo, B., Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices (2022) Sustainability (Switzerland), 14 (24), art. no. 16429. Cited 6 times. http://www.mdpi.com/journal/sustainability/ doi: 10.3390/su142416429Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Alcalá, G., Hernandez-Escobedo, Q. Optimal location and sizing of PV sources in DC networks for minimizing greenhouse emissions in diesel generators (Open Access) (2020) Symmetry, 12 (2), art. no. 322. Cited 29 times. https://res.mdpi.com/d_attachment/symmetry/symmetry-12-00322/article_deploy/symmetry-12-00322.pdf doi: 10.3390/sym12020322Iris, Ç., Lam, J.S.L. Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty (Open Access) (2021) Omega (United Kingdom), 103, art. no. 102445. Cited 77 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description doi: 10.1016/j.omega.2021.102445Iris, Ç., Lam, J.S.L. A review of energy efficiency in ports: Operational strategies, technologies and energy management systems (Open Access) (2019) Renewable and Sustainable Energy Reviews, 112, pp. 170-182. Cited 209 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.04.069Ferreira, J.C., Afonso, J.A., Monteiro, V., Afonso, J.L. An energy management platform for public buildings (Open Access) (2018) Electronics (Switzerland), 7 (11), art. no. 294. Cited 21 times. https://www.mdpi.com/2079-9292/7/11/294/pdf doi: 10.3390/electronics7110294Mariano-Hernández, D., Hernández-Callejo, L., Zorita-Lamadrid, A., Duque-Pérez, O., Santos García, F. A review of strategies for building energy management system: Model predictive control, demand side management, optimization, and fault detect & diagnosis (Open Access) (2021) Journal of Building Engineering, 33, art. no. 101692. Cited 214 times. http://www.journals.elsevier.com/journal-of-building-engineering/ doi: 10.1016/j.jobe.2020.101692Hohne, P.A., Kusakana, K., Numbi, B.P. Improving energy efficiency of thermal processes in healthcare institutions: A review on the latest sustainable energy management strategies (Open Access) (2020) Energies, 13 (3), art. no. 569. Cited 12 times. https://www.mdpi.com/1996-1073/13/3 doi: 10.3390/en13030569Pereira, F., Caetano, N.S., Felgueiras, C. Increasing energy efficiency with a smart farm—An economic evaluation (Open Access) (2022) Energy Reports, 8, pp. 454-461. Cited 5 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2022.01.074Zhuo, Z., Zhang, N., Kang, C., Dong, R., Liu, Y. Optimal Operation of Hybrid AC/DC Distribution Network with High Penetrated Renewable Energy (2018) IEEE Power and Energy Society General Meeting, 2018-August, art. no. 8585802. Cited 5 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153867703-2 doi: 10.1109/PESGM.2018.8585802Gomez, A.L., Arredondo, C.A., Luna, M.A., Villegas, S., Hernandez, J. Regulating the integration of renewable energy in Colombia: Implications of Law 1715 of 2014 (Open Access) (2016) Conference Record of the IEEE Photovoltaic Specialists Conference, 2016-November, art. no. 7750280, pp. 3317-3321. Cited 3 times. ISBN: 978-150902724-8 doi: 10.1109/PVSC.2016.7750280Rodríguez-Urrego, D., Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects (Open Access) (2018) Renewable and Sustainable Energy Reviews, 92, pp. 160-170. Cited 48 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2018.04.065Montoya, O.D., Gil-González, W., Molina-Cabrera, A. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources (Open Access) (2021) DYNA (Colombia), 88 (217), pp. 178-184. Cited 7 times. http://www.scielo.org.co/pdf/dyna/v88n217/2346-2183-dyna-88-217-178.pdf doi: 10.15446/dyna.v88n217.93099Ferro, G., Robba, M., D'Achiardi, D., Haider, R., Annaswamy, A.M. A distributed approach to the optimal power flow problem for unbalanced and mesh networks (Open Access) (2020) IFAC-PapersOnLine, 53 (2), pp. 13287-13292. Cited 8 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2020.12.159Javadi, M.S., Gouveia, C.S., Carvalho, L.M., Silva, R. Optimal Power Flow Solution for Distribution Networks using Quadratically Constrained Programming and McCormick Relaxation Technique (2021) 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9584464 ISBN: 978-166543612-0 doi: 10.1109/EEEIC/ICPSEurope51590.2021.9584627Soroudi, A. Power system optimization modeling in GAMS (Open Access) (2017) Power System Optimization Modeling in GAMS, pp. 1-295. Cited 277 times. http://www.springer.com/in/book/9783319623498 ISBN: 978-331962350-4; 978-331962349-8 doi: 10.1007/978-3-319-62350-4Montoya, O.D., Molina-Cabrera, A., Hernández, J.C. A comparative study on power flow methods applied to AC distribution networks with single-phase representation (2021) Electronics (Switzerland), 10 (21), art. no. 2573. Cited 7 times. https://www.mdpi.com/2079-9292/10/21/2573/pdf doi: 10.3390/electronics10212573http://purl.org/coar/resource_type/c_6501ORIGINALenergies-16-00976-v2.pdfenergies-16-00976-v2.pdfapplication/pdf641087https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/1/energies-16-00976-v2.pdfdb7760981d6fafe130ad190d7706864fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-16-00976-v2.pdf.txtenergies-16-00976-v2.pdf.txtExtracted texttext/plain60339https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/4/energies-16-00976-v2.pdf.txt220be25f1c510eadd3f64dd8cf8d0dc1MD54THUMBNAILenergies-16-00976-v2.pdf.jpgenergies-16-00976-v2.pdf.jpgGenerated Thumbnailimage/jpeg8192https://repositorio.utb.edu.co/bitstream/20.500.12585/12395/5/energies-16-00976-v2.pdf.jpg48ab11a29d4bfc1096fbbe76fb6dfdbcMD5520.500.12585/12395oai:repositorio.utb.edu.co:20.500.12585/123952023-07-22 00:18:26.695Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=