Early prediction of severe maternal morbidity using machine learning techniques

Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8999
Acceso en línea:
https://hdl.handle.net/20.500.12585/8999
Palabra clave:
Logistic regression
Machine learning
Severe maternal morbidity
Artificial intelligence
Diseases
Learning algorithms
Obstetrics
Early prediction
Learning models
Logistic regressions
Machine learning techniques
Maternal morbidity
Methods and materials
Pregnant woman
Public health issues
Learning systems
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8e9b0579ddc515b682005a2f842f99c9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8999
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Early prediction of severe maternal morbidity using machine learning techniques
title Early prediction of severe maternal morbidity using machine learning techniques
spellingShingle Early prediction of severe maternal morbidity using machine learning techniques
Logistic regression
Machine learning
Severe maternal morbidity
Artificial intelligence
Diseases
Learning algorithms
Obstetrics
Early prediction
Learning models
Logistic regressions
Machine learning techniques
Maternal morbidity
Methods and materials
Pregnant woman
Public health issues
Learning systems
title_short Early prediction of severe maternal morbidity using machine learning techniques
title_full Early prediction of severe maternal morbidity using machine learning techniques
title_fullStr Early prediction of severe maternal morbidity using machine learning techniques
title_full_unstemmed Early prediction of severe maternal morbidity using machine learning techniques
title_sort Early prediction of severe maternal morbidity using machine learning techniques
dc.contributor.editor.none.fl_str_mv Escalante H.J.
Montes-y-Gomez M.
Segura A.
de Dios Murillo J.
dc.subject.keywords.none.fl_str_mv Logistic regression
Machine learning
Severe maternal morbidity
Artificial intelligence
Diseases
Learning algorithms
Obstetrics
Early prediction
Learning models
Logistic regressions
Machine learning techniques
Maternal morbidity
Methods and materials
Pregnant woman
Public health issues
Learning systems
topic Logistic regression
Machine learning
Severe maternal morbidity
Artificial intelligence
Diseases
Learning algorithms
Obstetrics
Early prediction
Learning models
Logistic regressions
Machine learning techniques
Maternal morbidity
Methods and materials
Pregnant woman
Public health issues
Learning systems
description Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models. © Springer International Publishing AG 2016.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:44Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:44Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270
dc.identifier.isbn.none.fl_str_mv 9783319479545
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8999
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-47955-2_22
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57203489577
57191835839
57191844192
26325154200
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270
9783319479545
03029743
10.1007/978-3-319-47955-2_22
Universidad Tecnológica de Bolívar
Repositorio UTB
57203489577
57191835839
57191844192
26325154200
url https://hdl.handle.net/20.500.12585/8999
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 23 November 2016 through 25 November 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994065492&doi=10.1007%2f978-3-319-47955-2_22&partnerID=40&md5=b77298054334f8966266596a659625f0
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8999/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021644370313216
spelling Escalante H.J.Montes-y-Gomez M.Segura A.de Dios Murillo J.Rodríguez E.A.Estrada F.E.Torres W.C.Santos J.C.M.2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 259-270978331947954503029743https://hdl.handle.net/20.500.12585/899910.1007/978-3-319-47955-2_22Universidad Tecnológica de BolívarRepositorio UTB57203489577571918358395719184419226325154200Severe Maternal Morbidity is a public health issue. It may occur during pregnancy, delivery, or puerperium due to conditions (hypertensive disorders, hemorrhages, infections and others) that put in risk the women’s or baby’s life. These conditions are really difficult to detect at an early stage. In response to the above, this work proposes using several machine learning techniques, which are considered most relevant in a bio-medical setting, in order to predict the risk level for Severe Maternal Morbidity in patients during pregnancy. The population studied correspond to pregnant women receiving prenatal care and final attention at E.S.E Clínica de Maternidad Rafael Calvo in Cartagena, Colombia. This paper presents the preliminary results of an ongoing project, as well as methods and materials considered for the construction of the learning models. © Springer International Publishing AG 2016.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994065492&doi=10.1007%2f978-3-319-47955-2_22&partnerID=40&md5=b77298054334f8966266596a659625f015th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016Early prediction of severe maternal morbidity using machine learning techniquesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fLogistic regressionMachine learningSevere maternal morbidityArtificial intelligenceDiseasesLearning algorithmsObstetricsEarly predictionLearning modelsLogistic regressionsMachine learning techniquesMaternal morbidityMethods and materialsPregnant womanPublic health issuesLearning systems23 November 2016 through 25 November 2016Carty, D.M., Siwy, J., Brennand, J.E., Zürbig, P., Mullen, W., Franke, J., McCulloch, J.W., Mischak, H., Urinary proteomics for prediction of preeclampsia (2011) Hypertension, 57 (3), pp. 561-569Casal, J., Mateu, E., Tipos de muestreo (2003) Rev. Epidem. Med. Prev, 1 (1), pp. 3-7Duran, M.E.M., García, O.E.P., Carey, A.C., Bonilla, H.Q., Espitia, N.C.C., Barros, E.C., Protocolo De Vigilancia En Salud PFarran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A., Predictive models to assess risk of type 2 diabetes, hypertension and comorbidity: Machine-learning algorithms and validation using national health data from kuwaita cohort study (2013) BMJ Open, 3 (5)Haaga, J.G., Wasserheit, J.N., Tsui, A.O., (1997) Reproductive Health in Developing Countries: Expanding Dimensions, Building Solutions, , National Academies Press, Washington, D.CMariño Martínez, C.A., Fiesco, V., Carolina, D., Caracterizaci, , Ph.D. thesis, Universidad Nacional de ColombiaMorales-Osorno, B., Martínez, D.M., Cifuentes-Borrero, R., Extreme maternal morbidity in Clinica Rafael Uribe Uribe, Cali, Colombia, from January 2003 to May (2007) Revista Colombiana De Obstetricia Y Ginecolog, 58 (3), pp. 184-188Nanda, S., Savvidou, M., Syngelaki, A., Akolekar, R., Nicolaides, K.H., Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks (2011) Prenat. Diagn, 31 (2), pp. 135-141Neocleous, C.K., Anastasopoulos, P., Nikolaides, K.H., Schizas, C.N., Neokleous, K.C., Neural networks to estimate the risk for preeclampsia occurrence (2009) International Joint Conference on Neural Networks, IJCNN 2009, pp. 2221-2225. , IEEE(1996), Revised 1990 estimates of maternal mortality: a new approach. World Health OrganizationPark, F.J., Leung, C.H., Poon, L.C., Williams, P.F., Rothwell, S.J., Hyett, J.A., Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy (2013) Aust. N. Z. J. Obstet. Gynaecol, 53 (6), pp. 532-539Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830Poon, L.C., Kametas, N.A., Maiz, N., Akolekar, R., Nicolaides, K.H., Firsttrimester prediction of hypertensive disorders in pregnancy (2009) Hypertension, 53 (5), pp. 812-818Rojas, J.A., Cogollo, M., Miranda, J.E., Ramos, E.C., Fernández, J.C., Bello, A.M., Morbilidad materna extrema en cuidados intensivos obst Revista Colombiana De Obstetricia Y Ginecologde la Salud, O.P., (1995) Clasificación estadística Internacional De Enfermedades Y Problemas Relacionados Con La Salud: Décima revisi´on: CIE-10, , Pan American Health Orgde Vigilancia, S., Control en salud p (2012) Informe De Intoxicaciones Por Plaguicidas, , Instituto Nacional de Salud, INS. Bogot, á, Colombiahttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8999/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8999oai:repositorio.utb.edu.co:20.500.12585/89992021-02-02 13:53:54.925Repositorio Institucional UTBrepositorioutb@utb.edu.co