SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks

In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their mai...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9152
Acceso en línea:
https://hdl.handle.net/20.500.12585/9152
Palabra clave:
Classification model
Data set
DoS attacks
Feature selection
Machine learning
Support vector machine
Classification (of information)
Feature extraction
Information services
Intrusion detection
Learning systems
Network security
Support vector machines
Web services
Business modeling
Classification models
Computer resources
Cross-validation technique
Data set
Distributed denial of service attack
Intrusion Detection Systems
Network bandwidth
Denial-of-service attack
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8e4710d4653bc2ae49dded3fcb37eebb
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9152
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
title SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
spellingShingle SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
Classification model
Data set
DoS attacks
Feature selection
Machine learning
Support vector machine
Classification (of information)
Feature extraction
Information services
Intrusion detection
Learning systems
Network security
Support vector machines
Web services
Business modeling
Classification models
Computer resources
Cross-validation technique
Data set
Distributed denial of service attack
Intrusion Detection Systems
Network bandwidth
Denial-of-service attack
title_short SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
title_full SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
title_fullStr SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
title_full_unstemmed SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
title_sort SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
dc.contributor.editor.none.fl_str_mv Botto-Tobar M.
Leon-Acurio J.
Diaz Cadena A.
Montiel Diaz P.
dc.subject.keywords.none.fl_str_mv Classification model
Data set
DoS attacks
Feature selection
Machine learning
Support vector machine
Classification (of information)
Feature extraction
Information services
Intrusion detection
Learning systems
Network security
Support vector machines
Web services
Business modeling
Classification models
Computer resources
Cross-validation technique
Data set
Distributed denial of service attack
Intrusion Detection Systems
Network bandwidth
Denial-of-service attack
topic Classification model
Data set
DoS attacks
Feature selection
Machine learning
Support vector machine
Classification (of information)
Feature extraction
Information services
Intrusion detection
Learning systems
Network security
Support vector machines
Web services
Business modeling
Classification models
Computer resources
Cross-validation technique
Data set
Distributed denial of service attack
Intrusion Detection Systems
Network bandwidth
Denial-of-service attack
description In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:04Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:04Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389
dc.identifier.isbn.none.fl_str_mv 9783030320324
dc.identifier.issn.none.fl_str_mv 21945357
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9152
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-32033-1_35
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210565161
26325154200
identifier_str_mv Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389
9783030320324
21945357
10.1007/978-3-030-32033-1_35
Universidad Tecnológica de Bolívar
Repositorio UTB
57210565161
26325154200
url https://hdl.handle.net/20.500.12585/9152
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 29 May 2019 through 31 May 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9152/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021760695140352
spelling Botto-Tobar M.Leon-Acurio J.Diaz Cadena A.Montiel Diaz P.Álvarez Almeida L.A.Martínez-Santos, Juan Carlos2020-03-26T16:33:04Z2020-03-26T16:33:04Z2020Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389978303032032421945357https://hdl.handle.net/20.500.12585/915210.1007/978-3-030-32033-1_35Universidad Tecnológica de BolívarRepositorio UTB5721056516126325154200In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacksinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fClassification modelData setDoS attacksFeature selectionMachine learningSupport vector machineClassification (of information)Feature extractionInformation servicesIntrusion detectionLearning systemsNetwork securitySupport vector machinesWeb servicesBusiness modelingClassification modelsComputer resourcesCross-validation techniqueData setDistributed denial of service attackIntrusion Detection SystemsNetwork bandwidthDenial-of-service attack29 May 2019 through 31 May 2019Ajagekar, S.K., Jadhav, V., Study on web DDoS attacks detection using multino-mial classifer (2016) 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5Ashraf, J., Latif, S., Handling intrusion and DDoS attacks in software defined networks using machine learning techniques (2014) 2014 National Software Engineering Conference, pp. 55-60Bhavsar, Y.B., Waghmare, K.C., Intrusion detection system using data mining technique: Support vector machine (2013) Int. J. Emerg. Technol. Adv. Eng., 3 (3), pp. 581-586Chandrashekar, G., Sahin, F., A survey on feature selection methods (2014) Comput. Electr. Eng., 40 (1), pp. 16-28Criscuolo, P.J., Distributed denial of service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht CIAC-2319 (2000) Lawrence Livermore National Laboratory, p. 18. , p., FebruaryDeokar, B., Ambarish, H., Intrusion detection system using log files and reinforcement learning (2012) Int. J. Comput. Appl, 45 (19), pp. 28-35Deshmukh, R.V., Devadkar, K.K., Understanding DDoS attack and its effect in cloud environment (2015) Procedia Comput. Sci., 49, pp. 202-210Doshi, R., Apthorpe, N., Feamster, N., Machine learning ddos detection for consumer internet of things devices (2018) 2018 IEEE Security and Privacy Workshops (SPW), pp. 29-35Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Commun. ACM, 39 (11), pp. 27-34Feizollah, A., Anuar, N., Salleh, R., Amalina, F., Maarof, R.R., Shamshirband, S., A study of machine learning classifiers for anomaly-based mobile botnet detection (2013) Malays. J. Comput. Sci., 26, pp. 251-265Gyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) Int. J. Sci. Res. Publ., 2 (12), pp. 1-13Kaur, P., Kumar, M., Bhand, A., A review of detection approaches for distributed denial of service attacks (2017) Syst. Sci. Control Eng., 5 (1), pp. 301-320Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., A detailed analysis of the KDD cup 99 data set (2009) 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1-6. , pp., IEEEZargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks (2013) IEEE Commun. Surv. Tutor., 15 (4), pp. 2046-2069http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9152/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9152oai:repositorio.utb.edu.co:20.500.12585/91522023-05-26 16:30:50.018Repositorio Institucional UTBrepositorioutb@utb.edu.co