SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks
In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their mai...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9152
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9152
- Palabra clave:
- Classification model
Data set
DoS attacks
Feature selection
Machine learning
Support vector machine
Classification (of information)
Feature extraction
Information services
Intrusion detection
Learning systems
Network security
Support vector machines
Web services
Business modeling
Classification models
Computer resources
Cross-validation technique
Data set
Distributed denial of service attack
Intrusion Detection Systems
Network bandwidth
Denial-of-service attack
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_8e4710d4653bc2ae49dded3fcb37eebb |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9152 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
title |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
spellingShingle |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks Classification model Data set DoS attacks Feature selection Machine learning Support vector machine Classification (of information) Feature extraction Information services Intrusion detection Learning systems Network security Support vector machines Web services Business modeling Classification models Computer resources Cross-validation technique Data set Distributed denial of service attack Intrusion Detection Systems Network bandwidth Denial-of-service attack |
title_short |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
title_full |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
title_fullStr |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
title_full_unstemmed |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
title_sort |
SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacks |
dc.contributor.editor.none.fl_str_mv |
Botto-Tobar M. Leon-Acurio J. Diaz Cadena A. Montiel Diaz P. |
dc.subject.keywords.none.fl_str_mv |
Classification model Data set DoS attacks Feature selection Machine learning Support vector machine Classification (of information) Feature extraction Information services Intrusion detection Learning systems Network security Support vector machines Web services Business modeling Classification models Computer resources Cross-validation technique Data set Distributed denial of service attack Intrusion Detection Systems Network bandwidth Denial-of-service attack |
topic |
Classification model Data set DoS attacks Feature selection Machine learning Support vector machine Classification (of information) Feature extraction Information services Intrusion detection Learning systems Network security Support vector machines Web services Business modeling Classification models Computer resources Cross-validation technique Data set Distributed denial of service attack Intrusion Detection Systems Network bandwidth Denial-of-service attack |
description |
In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:04Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:04Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389 |
dc.identifier.isbn.none.fl_str_mv |
9783030320324 |
dc.identifier.issn.none.fl_str_mv |
21945357 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9152 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-32033-1_35 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57210565161 26325154200 |
identifier_str_mv |
Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389 9783030320324 21945357 10.1007/978-3-030-32033-1_35 Universidad Tecnológica de Bolívar Repositorio UTB 57210565161 26325154200 |
url |
https://hdl.handle.net/20.500.12585/9152 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
29 May 2019 through 31 May 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9152/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021760695140352 |
spelling |
Botto-Tobar M.Leon-Acurio J.Diaz Cadena A.Montiel Diaz P.Álvarez Almeida L.A.Martínez-Santos, Juan Carlos2020-03-26T16:33:04Z2020-03-26T16:33:04Z2020Advances in Intelligent Systems and Computing; Vol. 1067, pp. 380-389978303032032421945357https://hdl.handle.net/20.500.12585/915210.1007/978-3-030-32033-1_35Universidad Tecnológica de BolívarRepositorio UTB5721056516126325154200In the last few years, the Digital Services industry has grown tremendously, offering numerous services through the Internet and using a recent concept or business model called cloud computing. For this reason, new threats and cyber-attacks have appeared, such as Denial of Service attacks. Their main objective is to prevent legitimate users from accessing services (websites, online stores, blogs, social media, banking services, etc.) offered by different companies on the Internet. In addition, it produces collateral damage in host and web servers, for example, exhaustion of network bandwidth and computer resources of the victim. In this article, we will analyze the information contained in NSL-KDD data-set, which possesses important records about the several behaviors of network traffic. These will be selected to present two methods of selection of features that allow the selection of the most relevant attributes within the data set, to build an Intrusion Detection System. The attributes selected for this experiment will be of great help to train and test various kernels of the Support Vector Machine. Once the model has been tested, an evaluation of the classification model will be performed using the cross-validation technique and we finally can choose the best classifier. © 2020, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075841900&doi=10.1007%2f978-3-030-32033-1_35&partnerID=40&md5=41f83505d6bd21f43683a89bc481d6af1st International Conference on Advances in Emerging Trends and Technologies, ICAETT 2019SIDS-DDoS, a Smart Intrusion Detection System for Distributed Denial of Service Attacksinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fClassification modelData setDoS attacksFeature selectionMachine learningSupport vector machineClassification (of information)Feature extractionInformation servicesIntrusion detectionLearning systemsNetwork securitySupport vector machinesWeb servicesBusiness modelingClassification modelsComputer resourcesCross-validation techniqueData setDistributed denial of service attackIntrusion Detection SystemsNetwork bandwidthDenial-of-service attack29 May 2019 through 31 May 2019Ajagekar, S.K., Jadhav, V., Study on web DDoS attacks detection using multino-mial classifer (2016) 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1-5Ashraf, J., Latif, S., Handling intrusion and DDoS attacks in software defined networks using machine learning techniques (2014) 2014 National Software Engineering Conference, pp. 55-60Bhavsar, Y.B., Waghmare, K.C., Intrusion detection system using data mining technique: Support vector machine (2013) Int. J. Emerg. Technol. Adv. Eng., 3 (3), pp. 581-586Chandrashekar, G., Sahin, F., A survey on feature selection methods (2014) Comput. Electr. Eng., 40 (1), pp. 16-28Criscuolo, P.J., Distributed denial of service: Trin00, Tribe Flood Network, Tribe Flood Network 2000, and Stacheldraht CIAC-2319 (2000) Lawrence Livermore National Laboratory, p. 18. , p., FebruaryDeokar, B., Ambarish, H., Intrusion detection system using log files and reinforcement learning (2012) Int. J. Comput. Appl, 45 (19), pp. 28-35Deshmukh, R.V., Devadkar, K.K., Understanding DDoS attack and its effect in cloud environment (2015) Procedia Comput. Sci., 49, pp. 202-210Doshi, R., Apthorpe, N., Feamster, N., Machine learning ddos detection for consumer internet of things devices (2018) 2018 IEEE Security and Privacy Workshops (SPW), pp. 29-35Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Commun. ACM, 39 (11), pp. 27-34Feizollah, A., Anuar, N., Salleh, R., Amalina, F., Maarof, R.R., Shamshirband, S., A study of machine learning classifiers for anomaly-based mobile botnet detection (2013) Malays. J. Comput. Sci., 26, pp. 251-265Gyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) Int. J. Sci. Res. Publ., 2 (12), pp. 1-13Kaur, P., Kumar, M., Bhand, A., A review of detection approaches for distributed denial of service attacks (2017) Syst. Sci. Control Eng., 5 (1), pp. 301-320Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A., A detailed analysis of the KDD cup 99 data set (2009) 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1-6. , pp., IEEEZargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks (2013) IEEE Commun. Surv. Tutor., 15 (4), pp. 2046-2069http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9152/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9152oai:repositorio.utb.edu.co:20.500.12585/91522023-05-26 16:30:50.018Repositorio Institucional UTBrepositorioutb@utb.edu.co |