Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide
A millimeter-wave two-pole bandpass filter (BPF) with an asymmetrical frequency response is realized on a flexible liquid crystal polymer substrate for wearable/conformal wireless applications. The design uses the triangular-shape quarter-mode substrate integrated waveguide (QMSIW) cavity loaded wit...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9026
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9026
- Palabra clave:
- Bandpass filter
Complementary split ring resonator
Liquid crystal polymer
Millimetre-wave
Quarter-mode substrate integrated waveguide
Bandpass filters
Bandwidth
Copolymers
Frequency response
Liquid crystal polymers
Liquid crystals
Microwave circuits
Millimeter waves
Optical resonators
Poles
Resonators
Ring gages
Substrate integrated waveguides
Substrates
Waveguides
Wireless telecommunication systems
Bandpass filter (BPF)
Complementary split ring resonators
Fractional bandwidths
Millimeter-wave bandpass filters
Millimetre waves
Size reductions
Triangular shapes
Wireless application
Waveguide filters
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_8bee18e3f93e67e3211919c3d6f223ed |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9026 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
title |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
spellingShingle |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide Bandpass filter Complementary split ring resonator Liquid crystal polymer Millimetre-wave Quarter-mode substrate integrated waveguide Bandpass filters Bandwidth Copolymers Frequency response Liquid crystal polymers Liquid crystals Microwave circuits Millimeter waves Optical resonators Poles Resonators Ring gages Substrate integrated waveguides Substrates Waveguides Wireless telecommunication systems Bandpass filter (BPF) Complementary split ring resonators Fractional bandwidths Millimeter-wave bandpass filters Millimetre waves Size reductions Triangular shapes Wireless application Waveguide filters |
title_short |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
title_full |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
title_fullStr |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
title_full_unstemmed |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
title_sort |
Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguide |
dc.subject.keywords.none.fl_str_mv |
Bandpass filter Complementary split ring resonator Liquid crystal polymer Millimetre-wave Quarter-mode substrate integrated waveguide Bandpass filters Bandwidth Copolymers Frequency response Liquid crystal polymers Liquid crystals Microwave circuits Millimeter waves Optical resonators Poles Resonators Ring gages Substrate integrated waveguides Substrates Waveguides Wireless telecommunication systems Bandpass filter (BPF) Complementary split ring resonators Fractional bandwidths Millimeter-wave bandpass filters Millimetre waves Size reductions Triangular shapes Wireless application Waveguide filters |
topic |
Bandpass filter Complementary split ring resonator Liquid crystal polymer Millimetre-wave Quarter-mode substrate integrated waveguide Bandpass filters Bandwidth Copolymers Frequency response Liquid crystal polymers Liquid crystals Microwave circuits Millimeter waves Optical resonators Poles Resonators Ring gages Substrate integrated waveguides Substrates Waveguides Wireless telecommunication systems Bandpass filter (BPF) Complementary split ring resonators Fractional bandwidths Millimeter-wave bandpass filters Millimetre waves Size reductions Triangular shapes Wireless application Waveguide filters |
description |
A millimeter-wave two-pole bandpass filter (BPF) with an asymmetrical frequency response is realized on a flexible liquid crystal polymer substrate for wearable/conformal wireless applications. The design uses the triangular-shape quarter-mode substrate integrated waveguide (QMSIW) cavity loaded with a complementary split-ring resonator. The compact cavity shows a resonant mode below the quasi-TE<inf>1,0,0.5</inf> mode of an original QMSIW cavity, which indicates a further size reduction. In addition, its low quality factor (Q) is useful for BPFs with broad fractional bandwidth (FBW). A surface micromachined two-pole Chebyshev BPF is realized for operation at 35 GHz with a 20 dB return loss FBW of 8% and an insertion loss of 1.7 dB. © 2015 Wiley Periodicals, Inc. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:48Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:48Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Microwave and Optical Technology Letters; Vol. 57, Núm. 8; pp. 1782-1784 |
dc.identifier.issn.none.fl_str_mv |
08952477 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9026 |
dc.identifier.doi.none.fl_str_mv |
10.1002/mop.29190 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
36698427600 56297560700 7402126778 |
identifier_str_mv |
Microwave and Optical Technology Letters; Vol. 57, Núm. 8; pp. 1782-1784 08952477 10.1002/mop.29190 Universidad Tecnológica de Bolívar Repositorio UTB 36698427600 56297560700 7402126778 |
url |
https://hdl.handle.net/20.500.12585/9026 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
publisher.none.fl_str_mv |
John Wiley and Sons Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84930063619&doi=10.1002%2fmop.29190&partnerID=40&md5=eb155c29492a78b0657944c10434a043 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9026/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021746815139840 |
spelling |
2020-03-26T16:32:48Z2020-03-26T16:32:48Z2015Microwave and Optical Technology Letters; Vol. 57, Núm. 8; pp. 1782-178408952477https://hdl.handle.net/20.500.12585/902610.1002/mop.29190Universidad Tecnológica de BolívarRepositorio UTB36698427600562975607007402126778A millimeter-wave two-pole bandpass filter (BPF) with an asymmetrical frequency response is realized on a flexible liquid crystal polymer substrate for wearable/conformal wireless applications. The design uses the triangular-shape quarter-mode substrate integrated waveguide (QMSIW) cavity loaded with a complementary split-ring resonator. The compact cavity shows a resonant mode below the quasi-TE<inf>1,0,0.5</inf> mode of an original QMSIW cavity, which indicates a further size reduction. In addition, its low quality factor (Q) is useful for BPFs with broad fractional bandwidth (FBW). A surface micromachined two-pole Chebyshev BPF is realized for operation at 35 GHz with a 20 dB return loss FBW of 8% and an insertion loss of 1.7 dB. © 2015 Wiley Periodicals, Inc.National Science Foundation, NSF: 1132413Recurso electrónicoapplication/pdfengJohn Wiley and Sons Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84930063619&doi=10.1002%2fmop.29190&partnerID=40&md5=eb155c29492a78b0657944c10434a043Millimeter-wave bandpass filter on LCP using CSRR-loaded triangular-shape quarter-mode substrate integrated waveguideinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Bandpass filterComplementary split ring resonatorLiquid crystal polymerMillimetre-waveQuarter-mode substrate integrated waveguideBandpass filtersBandwidthCopolymersFrequency responseLiquid crystal polymersLiquid crystalsMicrowave circuitsMillimeter wavesOptical resonatorsPolesResonatorsRing gagesSubstrate integrated waveguidesSubstratesWaveguidesWireless telecommunication systemsBandpass filter (BPF)Complementary split ring resonatorsFractional bandwidthsMillimeter-wave bandpass filtersMillimetre wavesSize reductionsTriangular shapesWireless applicationWaveguide filtersSenior D.E.Rahimi A.Yoon, Y.K.Yuce, M.R., Ho, C.K., Moo, S.C., Wideband communication for implantable and wearable systems (2009) IEEE Trans Microwave Theory Tech, 57, pp. 2597-2604(2011) How the Next Evolution of the Internet is Changing Everything, , The Internet of Things, White Paper, CiscoSenior, D.E., Rahimi, A., Jao, P., Yoon, Y.-K., Flexible liquid crystal polymer based complementary split ring resonator loaded quarter mode substrate integrated waveguide filters for compact and wearable broadband RF applications (2014) IEEE Electronic Components and Technology Conference, pp. 789-795Rappaport, T.S., Shu, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Gutierrez, F., Millimeter wave mobile communications for 5G cellular: It will work! (2013) IEEE Access, 1, pp. 335-349Hao, Z.-C., Hong, J.-S., Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology (2008) IEEE Trans Microwave Theory Tech, 56, pp. 2095-2100Zhang, S., Bian, T., Zhai, Y., Liu, W., Yang, G., Liu, F., Quarter substrate integrated waveguide resonator applied to fractal-shaped BPFs (2012) Microwave J, 55, pp. 200-208Senior, D.E., (2012) Advanced Metamaterial Circuits for Microwave and Millimeter Wave Applications, , PhD Dissertation, University of Florida, Gainesville, FLZhang, Z., Yang, N., Wu, K., 5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems (2009) Proceedings of IEEE Radio and Wireless Symposium, pp. 95-98Song, C., Duan, Y., Zhang, X., Zhang, Y., Zhang, Y., Compact wideband LTCC bandpass filter exploiting eighth-mode SIW loaded with CSRR (2014) Microwave Opt Technol Lett, 56, pp. 1098-2760Hong, J.S., Lancaster, M.J., (2001) Microstrip Filters for RF/microwave Applications, , Wiley, New Yorkhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9026/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9026oai:repositorio.utb.edu.co:20.500.12585/90262023-04-24 08:52:25.265Repositorio Institucional UTBrepositorioutb@utb.edu.co |