Solar Photovoltaic Integration in Monopolar DC Networks via the GNDO Algorithm

This paper focuses on minimizing the annual operative costs in monopolar DC distribution networks with the inclusion of solar photovoltaic (PV) generators while considering a planning period of 20 years. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Grisales-Noreña, Luis Fernando
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11124
Acceso en línea:
https://hdl.handle.net/20.500.12585/11124
https://doi.org/10.3390/a15080277
Palabra clave:
Monopolar DC networks
Solar PV generation
Generalized normal distribution optimizer
Master–slave optimization
Successive approximation power flow method
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:This paper focuses on minimizing the annual operative costs in monopolar DC distribution networks with the inclusion of solar photovoltaic (PV) generators while considering a planning period of 20 years. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which binary variables define the nodes where the PV generators must be located, and continuous variables are related to the power flow solution and the optimal sizes of the PV sources. The implementation of a master–slave optimization approach is proposed in order to address the complexity of the MINLP formulation. In the master stage, the discrete-continuous generalized normal distribution optimizer (DCGNDO) is implemented to define the nodes for the PV sources along with their sizes. The slave stage corresponds to a specialized power flow approach for monopolar DC networks known as the successive approximation power flow method, which helps determine the total energy generation at the substation terminals and its expected operative costs in the planning period. Numerical results in the 33- and 69-bus grids demonstrate the effectiveness of the DCGNDO optimizer compared to the discrete-continuous versions of the Chu and Beasley genetic algorithm and the vortex search algorithm.