QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents

The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a grea...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9032
Acceso en línea:
https://hdl.handle.net/20.500.12585/9032
Palabra clave:
Atom-based quadratic indices
Linear discriminant analysis
QSAR model
QuBiLs-MAS software
Vrtual screening, antifungal agent
Antifungal agent
Chemistry
Computer simulation
Discriminant analysis
Drug development
Quantitative structure activity relation
Statistical model
Antifungal Agents
Computer simulation
Discriminant analysis
Drug Discovery
Linear Models
Quantitative Structure-Activity Relationship
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_8a8ed734fa960316c548d788119be4ae
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9032
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
title QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
spellingShingle QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
Atom-based quadratic indices
Linear discriminant analysis
QSAR model
QuBiLs-MAS software
Vrtual screening, antifungal agent
Antifungal agent
Chemistry
Computer simulation
Discriminant analysis
Drug development
Quantitative structure activity relation
Statistical model
Antifungal Agents
Computer simulation
Discriminant analysis
Drug Discovery
Linear Models
Quantitative Structure-Activity Relationship
title_short QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
title_full QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
title_fullStr QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
title_full_unstemmed QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
title_sort QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents
dc.subject.keywords.none.fl_str_mv Atom-based quadratic indices
Linear discriminant analysis
QSAR model
QuBiLs-MAS software
Vrtual screening, antifungal agent
Antifungal agent
Chemistry
Computer simulation
Discriminant analysis
Drug development
Quantitative structure activity relation
Statistical model
Antifungal Agents
Computer simulation
Discriminant analysis
Drug Discovery
Linear Models
Quantitative Structure-Activity Relationship
topic Atom-based quadratic indices
Linear discriminant analysis
QSAR model
QuBiLs-MAS software
Vrtual screening, antifungal agent
Antifungal agent
Chemistry
Computer simulation
Discriminant analysis
Drug development
Quantitative structure activity relation
Statistical model
Antifungal Agents
Computer simulation
Discriminant analysis
Drug Discovery
Linear Models
Quantitative Structure-Activity Relationship
description The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:48Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:48Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv SAR and QSAR in Environmental Research; Vol. 26, Núm. 11; pp. 943-958
dc.identifier.issn.none.fl_str_mv 1062936X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9032
dc.identifier.doi.none.fl_str_mv 10.1080/1062936X.2015.1104517
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 6506280403
55665599200
55363486500
55683426700
56674579200
9434652400
57193209050
7004872108
6701762262
identifier_str_mv SAR and QSAR in Environmental Research; Vol. 26, Núm. 11; pp. 943-958
1062936X
10.1080/1062936X.2015.1104517
Universidad Tecnológica de Bolívar
Repositorio UTB
6506280403
55665599200
55363486500
55683426700
56674579200
9434652400
57193209050
7004872108
6701762262
url https://hdl.handle.net/20.500.12585/9032
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis Ltd.
publisher.none.fl_str_mv Taylor and Francis Ltd.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84947865592&doi=10.1080%2f1062936X.2015.1104517&partnerID=40&md5=9de40bde3e81a41d4828d1586f4b0c9f
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9032/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021736106033152
spelling 2020-03-26T16:32:48Z2020-03-26T16:32:48Z2015SAR and QSAR in Environmental Research; Vol. 26, Núm. 11; pp. 943-9581062936Xhttps://hdl.handle.net/20.500.12585/903210.1080/1062936X.2015.1104517Universidad Tecnológica de BolívarRepositorio UTB65062804035566559920055363486500556834267005667457920094346524005719320905070048721086701762262The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections. © 2015 Taylor & Francis.Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPqAntifungal AgentsRecurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84947865592&doi=10.1080%2f1062936X.2015.1104517&partnerID=40&md5=9de40bde3e81a41d4828d1586f4b0c9fQuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agentsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Atom-based quadratic indicesLinear discriminant analysisQSAR modelQuBiLs-MAS softwareVrtual screening, antifungal agentAntifungal agentChemistryComputer simulationDiscriminant analysisDrug developmentQuantitative structure activity relationStatistical modelAntifungal AgentsComputer simulationDiscriminant analysisDrug DiscoveryLinear ModelsQuantitative Structure-Activity RelationshipMedina Marrero R.Marrero-Ponce Y.Barigye S.J.Echeverría Díaz Y.Acevedo Barrios, RosaCasañola-Martín G.M.García Bernal M.Torrens, F.Pérez-Giménez F.Blumberg, H.M., Jarvis, W.R., Soucie, J.M., Edwards, J.E., Patterson, J.E., Pfaller, M.A., Rangel-Frausto, M.S., Wenzel, R.P., Risk factors for candidal bloodstream infections in surgical intensive care unit patients: The NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey (2001) Clin. Infect. Dis, 33, pp. 177-186M.-P.Y. acknowledges Valencia University, Spain, for partial financial support as well as the programme ‘Estades Temporals per an Investigadors Convidats’ for a fellowship to work at Valencia University (2015). S.J.B. acknowledges financial support from CNPq.Maschmeyer, G., The changing epidemiology of invasive fungal infections: New threats (2006) Int. J. Antimicrob. Agents, 27, pp. 3-6Nucci, M., Marr, K.A., Emerging fungal diseases (2005) Clin. Infect. Dis, 41, pp. 521-526Rees, J.R., Pinner, R.W., Hajjeh, R.A., Brandt, M.E., Reingold, A.L., The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992–1993: Results of population-based laboratory active surveillance (1998) Clin. Infect. Dis, 27, pp. 1138-1147Walsh, T.J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E., Anaissie, E., Infections due to emerging and uncommon medically important fungal pathogens (2004) Clin. Microbiol. Infect, 10, pp. 48-66Dickman, D.A., Ding, H., Li, Q., Nilius, A.M., Balli, D.J., Ballaron, S.J., Trevillyan, J.M., Bennani, Y.L., Antifungal rapamycin analogues with reduced immunosuppressive activity (2000) Bioorg. Med. Chem. Lett, 10, pp. 1405-1408Gozalbes, R., Galvez, J., Moreno, A., Garcia-Domenech, R., Discovery of new antimalarial compounds by use of molecular connectivity techniques (1999) J. Pharm. Pharmacol, 51, pp. 111-117Marrero-Ponce, Y., Montero-Torres, A., Zaldivar, C.R., Veitia, M.I., Perez, M.M., Sanchez, R.N., Non-stochastic and stochastic linear indices of the 'molecular pseudograph's atom adjacency matrix': Application to 'in silico' studies for the rational discovery of new antimalarial compounds (2005) Bioorg. Med. Chem, 13, pp. 1293-1304Marrero-Ponce, Y., Iyarreta-Veitia, M., Montero-Torres, A., Romero-Zaldivar, C., Brandt, C.A., Avila, P.E., Kirchgatter, K., Machado, Y., Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps (2005) J. Chem. Inf. Model, 45, pp. 1082-1100McKie, J.H., Douglas, K.T., Chan, C., Roser, S.A., Yates, R., Read, M., Hyde, J.E., Sirawaraporn, W., Rational drug design approach for overcoming drug resistance: Application to pyrimethamine resistance in malaria (1998) J. Med. Chem, 41, pp. 1367-1370Estrada, E., Pena, A., Garcia-Domenech, R., Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach (1998) J. Comput. Aided Mol. Des, 12, pp. 583-595Estrada, E., Uriarte, E., Montero, A., Teijeira, M., Santana, L., De Clercq, E., A novel approach for the virtual screening and rational design of anticancer compounds (2000) J. Med. Chem, 43, pp. 1975-1985Gonzalez-Diaz, H., Tenorio, E., Castanedo, N., Santana, L., Uriarte, E., 3D QSAR Markov model for drug-induced eosinophilia – –theoretical prediction and preliminary experimental assay of the antimicrobial drug G1 (2005) Bioorg. Med. Chem, 13, pp. 1523-1530Lyne, P.D., Structure-based virtual screening: An overview (2002) Drug. Discov. Today, 7, pp. 1047-1055Todeschini, R., Consonni, V., (2009) Molecular Descriptors for Chemoinformatics, , Wiley-VCH, Weinheim:Seifert, M.H.J., Wolf, K., Vitt, D., Virtual high-throughput in silico screening (2003) Biosilico, pp. 143-149Barigye, S.J., Marrero-Ponce, Y., Pérez-Giménez, F., Bonchev, D., Trends in information theory-based chemical structure codification (2014) Mol. Divers, 19, pp. 305-319Barigye, S.J., Freitas, M.P., 2D-Discrete Fourier transform: Generalization of the MIA-QSAR strategy in molecular modeling (2015) Chemom. Intell. Lab. Syst, 143, pp. 79-84Barigye, S., Marrero-Ponce, Y., López, Y.M., Santiago, O.M., Torrens, F., Domenech, R.G., Galvez, J., Event-based criteria in GT-STAF information indices: Theory, exploratory diversity analysis and QSPR applications (2013) SAR QSAR Environ Res, 24, pp. 3-34Barigye, S.J., Freitas, M.P., Is molecular alignment an indispensable requirement in the MIA-QSAR method? (2015) J. Comput. Chem, 36, pp. 1748-1755Gollapudy, R., Ajmani, S., Kulkarni, S.A., Modeling and interactions ofAspergillus fumigatuslanosterol 14-alpha demethylase 'A' with azole antifungals (2004) Bioorg. Med. Chem, 12, pp. 2937-2950Gokhale, V.M., Kulkarni, V.M., Understanding the antifungal activity of terbinafine analogues using quantitative structure–activity relationship (QSAR) models (2000) Bioorg. Med. Chem, 8, pp. 2487-2499Purushottamachar, P., Kulkarni, V.M., 3D-QSAR of N-myristoyltransferase inhibiting antifungal agents by CoMFA and CoMSIA methods (2003) Bioorg. Med. Chem, 11, pp. 3487-3497Pranav, Kumar, S.K., Kulkarni, V.M., Insights into the selective inhibition ofCandida albicanssecreted aspartyl protease: A docking analysis study (2002) Bioorg. Med. Chem, 10, pp. 1153-1170Fratev, F., Benfenati, E., 3D-QSAR and molecular mechanics study for the differences in the azole activity against yeastlike and filamentous fungi and their relation to P450DM inhibition. 1. 3-Substituted-4(3H)-quinazolinones (2005) J. Chem. Inf. Model, 45, pp. 634-644Gonzalez-Diaz, H., Prado-Prado, F.J., Santana, L., Uriarte, E., Unify QSAR approach to antimicrobials. Part 1: Predicting antifungal activity against different species (2006) Bioorg. Med. Chem, 14, pp. 5973-5980Pastor, L., Garcia-Domenech, R., Galvez, J., Wolski, S., Garcia, M.D., New antifungals selected by molecular topology (1998) Bioorg. Med. Chem. Lett, 8, pp. 2577-2582García-Domenech, R., Catalá-Gregori, A., Calabuig, C., Antón-Fos, G., del Castillo, L., Gálvez, J., Predicting antifungal activity: A computational screening using topological descriptors (2002) Internet Electron. J. Mol. Des, 7, pp. 339-350Chen, S.-W., Li, Z.-R., Li, X.-Y., Prediction of antifungal activity by support vector machine approach (2005) J. Mol. Struct. (THEOCHEM), 731, pp. 73-81Marrero-Ponce, Y., Total and local quadratic indices of the molecular pseudograph′s atom adjacency matrix: Applications to the prediction of physical properties of organic compounds (2003) Molecules, 8, pp. 687-726Marrero-Ponce, Y., Linear indices of the ‘molecular pseudograph's atom adjacency matrix’: Definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors (2004) J. Chem. Inf. Comput. Sci, 44, pp. 2010-2026Marrero-Ponce, Y., Meneses-Marcel, A., Castillo-Garit, J.A., Machado-Tugores, Y., Escario, J.A., Barrio, A.G., Pereira, D.M., Alvarado, Y.J., Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs (2006) Bioorg. Med. Chem, 14, pp. 6502-6524García-Jacas, C.R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Valdés-Martiní, J.R., Contreras-Torres, E., QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps (2014) J. Comp. Chem, 35, pp. 1395-1409Garcia-Jacas, C.R., Marrero-Ponce, Y., Barigye, S.J., Valdes-Martini, J.R., Rivera-Borroto, O.M., Olivero-Verbel, J., N-linear algebraic maps for chemical structure codification: A suitable generalization for atom-pair approaches? (2014) Curr. Drug Metab, 15, pp. 441-469García-Jacas, C.R., Aguilera-Mendoza, L., González-Pérez, R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Avdeenko, T., Multi-server approach for high-throughput molecular descriptors calculation based on multi-linear algebraic maps (2015) Mol. Info, 34, pp. 60-69Casanola-Martin, G.M., Khan, M.T., Marrero-Ponce, Y., Ather, A., Sultankhodzhaev, M.N., Torrens, F., New tyrosinase inhibitors selected by atomic linear indices-based classification models (2006) Bioorg. Med. Chem. Lett, 16, pp. 324-330Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., TOMOCOMD-CARDD, a novel approach for computer-aided 'rational' drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds (2004) J. Comput. Aided Mol. Des, 18, pp. 615-634Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic (2005) Bioorg. Med. Chem, 13, pp. 1005-1020Marrero-Ponce, Y., Machado-Tugores, Y., Pereira, D.M., Escario, J.A., Barrio, A.G., Nogal-Ruiz, J.J., Ochoa, C., Meneses-Marcel, A., A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices (2005) Curr. Drug Discov. Technol, 2, pp. 245-265Marrero-Ponce, Y., Marrero, R.M., Torrens, F., Martinez, Y., Bernal, M.G., Zaldivar, V.R., Castro, E.A., Abalo, R.G., Non-stochastic and stochastic linear indices of the molecular pseudograph's atom-adjacency matrix: A novel approach for computational in silico screening and ‘rational’ selection of new lead antibacterial agents (2006) J. Mol. Model. (Online), 12, pp. 255-271Marrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-Zaldivar, V., Castro, E.A., Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: A promising approach for modeling of antibacterial activity (2005) Bioorg. Med. Chem, 13, pp. 2881-2899Vega, M.C., Montero-Torres, A., Marrero-Ponce, Y., Rolon, M., Gomez-Barrio, A., Escario, J.A., Aran, V.J., Torrens, F., New ligand-based approach for the discovery of antitrypanosomal compounds (2006) Bioorg. Med. Chem. Lett, 16, pp. 1898-1904Alho, M.A.M., Marrero-Ponce, Y., Barigye, S.J., Meneses-Marcel, A., Tugores, Y.M., Montero-Torres, A., Gómez-Barrio, A., Vega, M.C., Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones (2014) Bioorg. Med. Chem, 22, pp. 1568-1585Castillo-Garit, J.A., Marrero-Ponce, Y., Barigye, S.J., Medina-Marrero, R., Bernal, M.G., de la Vega, J.M., Torrens, F., García-Domenechd, R., In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach (2015) J. Braz. Chem. Soc, 26, pp. 1218-1226Bedi, P.M., Mahajan, M.P., Kapoor, V.K., Amidine derived 1,3-diazabuta-1,3-dienes as potential antibacterial and antifungal agents (2004) Bioorg. Med. Chem. Lett, 14, pp. 3821-3824Brayman, T.G., Wilks, J.W., Sensitive assay for antifungal activity of glucan synthase inhibitors that uses germ tube formation inCandida albicansas an end point (2003) Antimicrob. Agents Chemother, 47, pp. 3305-3310Bryskier, A., Novelties in the field of anti-infective compounds in 1999 (2000) Clin. Infect. Dis, 31, pp. 1423-1466Buchta, V., Pour, M., Kubanova, P., Silva, L., Votruba, I., Voprsalova, M., Schiller, R., Spulak, M., In vitro activities of 3-(halogenated phenyl)-5-acyloxymethyl- 2,5-dihydrofuran-2-ones against common and emerging yeasts and molds (2004) Antimicrob. Agents Chemother, 48, pp. 873-878Bueno, J.M., Cuevas, J.C., Fiandor, J.M., Garcia-Ochoa, S., Gomez de las Heras, F., Antifungal sordarins. Synthesis and structure-activity relationships of 3',4'-fused dioxolane and dioxane derivatives (2002) Bioorg. Med. Chem. Lett, 12, pp. 121-124Carta, A., Paglietti, G., Rahbar Nikookar, M.E., Sanna, P., Sechi, L., Zanetti, S., Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity (2002) Eur. J. Med. Chem, 37, pp. 355-366Clemons, K.V., Stevens, D.A., Efficacies of two novel azole derivatives each containing a morpholine ring, UR-9746 and UR-9751, against systemic murine coccidioidomycosis (1997) Antimicrob. Agents Chemother, 41, pp. 200-203Debono, M., Gordee, R.S., Antibiotics that inhibit fungal cell wall development (1994) Annu. Rev. Microbiol, 48, pp. 471-497Del Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S., Tidwell, R.R., Czarny, A., Bajic, M., Perfect, J.R., Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents (1998) Antimicrob. Agents Chemother, 42, pp. 2495-2502Del Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S.K., Tidwell, R.R., Kumar, A., Boykin, D.W., Perfect, J.R., In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles (1998) Antimicrob. Agents Chemother, 42, pp. 2503-2510Denning, D.W., Echinocandins and pneumocandins – –A new antifungal class with a novel mode of action (1997) J. Antimicrob. Chemother, 40, pp. 611-614Dominguez, J.M., Kelly, V.A., Kinsman, O.S., Marriott, M.S., F. Gomez de las Heras, and J.J. Martin, Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts (1998) Antimicrob. Agents Chemother, 42, pp. 2274-2278Ebiike, H., Masubuchi, M., Liu, P., Kawasaki, K., Morikami, K., Sogabe, S., Hayase, M., Shimma, N., Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2 (2002) Bioorg. Med. Chem. Lett, 12, pp. 607-610Emami, S., Falahati, M., Banifatemi, A., Shafiee, A., Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers (2004) Bioorg. Med. Chem, 12, pp. 5881-5889Favre, B., Ryder, N.S., Characterization of squalene epoxidase activity from the dermatophyteTrichophyton rubrumand its inhibition by terbinafine and other antimycotic agents (1996) Antimicrob. Agents Chemother, 40, pp. 443-447Fostel, J.M., Lartey, P.A., Emerging novel antifungal agents (2000) Drug. Discov. Today, 5, pp. 25-32Goker, H., Boykin, D.W., Yildiz, S., Synthesis and potent antimicrobial activity of some novel 2-phenyl or methyl-4H-1-benzopyran-4-ones carrying amidinobenzimidazoles (2005) Bioorg. Med. Chem, 13, pp. 1707-1714Gokhale, V.M., Kulkarni, V.M., Selectivity analysis of 5-(arylthio)-2,4-diaminoquinazolines as inhibitors ofCandida albicansdihydrofolate reductase by molecular dynamics simulations (2000) J. Comput. Aided Mol. Des, 14, pp. 495-506Hata, K., Kimura, J., Miki, H., Toyosawa, T., Moriyama, M., Katsu, K., Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis (1996) Antimicrob. Agents Chemother, 40, pp. 2243-2247Herreros, E., Almela, M.J., Lozano, S., F. Gomez de las Heras, and D. Gargallo-Viola, Antifungal activities and cytotoxicity studies of six new azasordarins (2001) Antimicrob. Agents Chemother, 45, pp. 3132-3139Herreros, E., Martinez, C.M., Almela, M.J., Marriott, M.S., De Las Heras, F.G., Gargallo-Viola, D., Sordarins: In vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi (1998) Antimicrob. Agents Chemother, 42, pp. 2863-2869Kamai, Y., Harasaki, T., Fukuoka, T., Ohya, S., Uchida, K., Yamaguchi, H., Kuwahara, S., In vitro and in vivo activities of CS-758 (R-120758), a new triazole antifungal agent (2002) Antimicrob. Agents Chemother, 46, pp. 367-370Khan, J.K., Montaseri, H., Poglod, M., Bu, H.Z., Zuo, Z., Salama, S.M., Daneshtalab, M., Micetich, R.G., Interspecies comparison of pharmacokinetics of the novel triazole antifungal agent SYN-2869 and its derivatives (2000) Antimicrob. Agents Chemother, 44, pp. 910-915Kubo, I., Xiao, P., Fujita, K., Antifungal activity of octyl gallate: Structural criteria and mode of action (2001) Bioorg. Med. Chem. Lett, 11, pp. 347-350Lal, B., Gund, V.G., Bhise, N.B., Gangopadhyay, A.K., Mannich reaction: An approach for the synthesis of water soluble mulundocandin analogues (2004) Bioorg. Med. Chem, 12, pp. 1751-1768Lal, B., Gund, V.G., Gangopadhyay, A.K., Nadkarni, S.R., Dikshit, V., Chatterjee, D.K., Shirvaikar, R., Semisynthetic modifications of hemiaminal function at ornithine unit of mulundocandin, towards chemical stability and antifungal activity (2003) Bioorg. Med. Chem, 11, pp. 5189-5198Li, S., Zhang, Z., Cain, A., Wang, B., Long, M., Taylor, J., Antifungal activity of camptothecin, trifolin, and hyperoside isolated fromCamptotheca acuminata (2005) J. Agric. Food Chem, 53, pp. 32-37Lopez, S.N., Castelli, M.V., Zacchino, S.A., Dominguez, J.N., Lobo, G., Charris-Charris, J., Cortes, J.C., Enriz, R.D., In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall (2001) Bioorg Med Chem, 9, pp. 1999-2013Mandala, S.M., Thornton, R.A., Milligan, J., Rosenbach, M., Garcia-Calvo, M., Bull, H.G., Harris, G., Kurtz, M.B., Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase (1998) J. Biol. Chem, 273, pp. 14942-14949Mandala, S.M., Thornton, R.A., Rosenbach, M., Milligan, J., Garcia-Calvo, M., Bull, H.G., Kurtz, M.B., Khafrefungin, a novel inhibitor of sphingolipid synthesis (1997) J. Biol. Chem, 272, pp. 32709-32714Masubuchi, K., Okada, T., Kohchi, M., Murata, T., Tsukazaki, M., Kondoh, O., Yamazaki, T., Shimma, N., Synthesis and antifungal activities of novel 1,3-beta-d-glucan synthase inhibitors. Part 2 (2001) Bioorg. Med. Chem. Lett, 11, pp. 1273-1276Masubuchi, M., Ebiike, H., Kawasaki, K., Sogabe, S., Morikami, K., Shiratori, Y., Tsujii, S., Shimma, N., Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase (2003) Bioorg. Med. Chem, 11, pp. 4463-4478Masubuchi, M., Kawasaki, K., Ebiike, H., Ikeda, Y., Tsujii, S., Sogabe, S., Fujii, T., Shimma, N., Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 1 (2001) Bioorg. Med. Chem. Lett, 11, pp. 1833-1837Matsumoto, M., Ishida, K., Konagai, A., Maebashi, K., Asaoka, T., Strong antifungal activity of SS750, a new triazole derivative, is based on its selective binding affinity to cytochrome P450 of fungi (2002) Antimicrob. Agents Chemother, 46, pp. 308-314Menozzi, G., Merello, L., Fossa, P., Schenone, S., Ranise, A., Mosti, L., Bondavalli, F., Tamburini, E., Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles (2004) Bioorg. Med. Chem, 12, pp. 5465-5483Moreau, S., Varache-Lembege, M., Larrouture, S., Fall, D., Neveu, A., Deffieux, G., Vercauteren, J., Nuhrich, A., (2-Arylhydrazonomethyl)-substituted xanthones as antimycotics: Synthesisand fungistatic activity against Candida species (2002) Eur. J. Med. Chem, 37, pp. 237-253Nam, N.H., Sardari, S., Selecky, M., Parang, K., Carboxylic acid and phosphate ester derivatives of fluconazole: Synthesis and antifungal activities (2004) Bioorg. Med. Chem, 12, pp. 6255-6269Nimura, K., Niwano, Y., Ishiduka, S., Fukumoto, R., Comparison of in vitro antifungal activities of topical antimycotics launched in 1990s in Japan (2001) Int. J. Antimicrob. Agents, 18, pp. 173-178Niwano, Y., Kuzuhara, N., Goto, Y., Munechika, Y., Kodama, H., Kanai, K., Yoshida, M., Yamaguchi, H., Efficacy of NND-502, a novel imidazole antimycotic agent, in experimental models ofCandida albicansandAspergillus fumigatusinfections (1999) Int. J. Antimicrob. Agents, 12, pp. 221-228Panneerselvam, P., Nair, R.R., Vijayalakshmi, G., Subramanian, E.H., Sridhar, S.K., Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents (2005) Eur. J. Med. Chem, 40, pp. 225-229Quesnelle, C.A., Gill, P., Dodier, M., St Laurent, D., Serrano-Wu, M., Marinier, A., Martel, A., Balasubramanian, B.N., Sordaricin antifungal agents (2003) Bioorg. Med. Chem. Lett, 13, pp. 519-524Ryu, C.K., Kang, H.Y., Yi, Y.J., Shin, K.H., Lee, B.H., Synthesis and antifungal activities of 5/6-arylamino-4,7-dioxobenzothiazoles (2000) Bioorg. Med. Chem. Lett, 10, pp. 1589-1591Sheehan, D.J., Hitchcock, C.A., Sibley, C.M., Current and emerging azole antifungal agents (1999) Clin. Microbiol. Rev, 12, pp. 40-79Stephens, C.E., Tanious, F., Kim, S., Wilson, W.D., Schell, W.A., Perfect, J.R., Franzblau, S.G., Boykin, D.W., Diguanidino and ‘reversed’ diamidino 2,5-diarylfurans as antimicrobial agents (2001) J. Med. Chem, 44, pp. 1741-1748Tkacz, J.S., DiDomenico, B., Antifungals: What's in the pipeline (2001) Curr. Opin. Microbiol, 4, pp. 540-545Tsuchimori, N., Hayashi, R., Kitamoto, N., Asai, K., Kitazaki, T., Iizawa, Y., Itoh, K., Okonogi, K., In vitro and in vivo antifungal activities of TAK-456, a novel oral triazole with a broad antifungal spectrum (2002) Antimicrob. Agents Chemother, 46, pp. 1388-1393Urbina, J.M., Cortes, J.C., Palma, A., Lopez, S.N., Zacchino, S.A., Enriz, R.D., Ribas, J.C., Kouznetzov, V.V., Inhibitors of the fungal cell wall. Synthesis of 4-aryl-4-N-arylamine-1-butenes and related compounds with inhibitory activities on beta(1–3) glucan and chitin synthases (2000) Bioorg. Med. Chem, 8, pp. 691-698Vargas, M.L., Castelli, M.V., Kouznetsov, V.V., Urbina, G.J., Lopez, S.N., Sortino, M., Enriz, R.D., Zacchino, S., In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers (2003) Bioorg. Med. Chem, 11, pp. 1531-1550Yalcin, I., Oren, I., Temiz, O., Sener, E.A., QSARs of some novel isosteric heterocyclics with antifungal activity (2000) Acta Biochim. Pol, 47, pp. 481-486Yotsuji, A., Shimizu, K., Araki, H., Fujimaki, K., Nishida, N., Hori, R., Annen, N., Narita, H., T-8581, a new orally and parenterally active triazole antifungal agent: In vitro and in vivo evaluations (1997) Antimicrob. Agents Chemother, 41, pp. 30-34Zhang, Y.Z., Sun, X., Zeckner, D.J., Sachs, R.K., Current, W.L., Chen, S.H., 8-Amido-Bearing pseudomycin B (PSB) analogue: Novel antifungal agents (2001) Bioorg. Med. Chem. Lett, 11, pp. 123-126Ablordeppey, S.Y., Fan, P., Li, S., Clark, A.M., Hufford, C.D., Substituted indoloquinolines as new antifungal agents (2002) Bioorg. Med. Chem, 10, pp. 1337-1346Saha, A.K., Liu, L., Simoneaux, R.L., Kukla, M.J., Marichal, P., Odds, F., Novel antifungals based on 4-substituted imidazole: a combinatorial chemistry approach to lead discovery and optimization (2000) Bioorg. Med. Chem. Lett, 10, pp. 2175-2178Barrett, D., Tanaka, A., Harada, K., Ohki, H., Watabe, E., Maki, K., Ikeda, F., Synthesis and biological activity of novel macrocyclic antifungals: Acylated conjugates of the ornithine moiety of the lipopeptidolactone FR901469 (2001) Bioorg. Med. Chem. Lett, 11, pp. 479-482Bryskier, A., Novelties in the field of anti-infectives in 1997 (1998) Clin. Infect. Dis, 27, pp. 865-883Martinez, A., Ferrer, S., Santos, I., Jimenez, E., Sparrowe, J., Regadera, J., De Las, F.G., Heras, and D. Gargallo-Viola, Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats (2001) Antimicrob. Agents Chemother, 45, pp. 3304-3309Serrano-Wu, M.H., St Laurent, D.R., Mazzucco, C.E., Stickle, T.M., Barrett, J.F., Vyas, D.M., Balasubramanian, B.N., Oxime derivatives of sordaricin as potent antifungal agents (2002) Bioorg. Med. Chem. Lett, 12, pp. 943-946Turan-Zitouni, G., Kaplancikli, Z.A., Yildiz, M.T., Chevallet, P., Kaya, D., Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H -1,2,4-triazole derivatives (2005) Eur. J. Med. Chem, 40, pp. 607-613Na, Y.M., Le Borgne, M., Pagniez, F., Le Baut, G., Le Pape, P., Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives (2003) Eur. J. Med. Chem, 38, pp. 75-87(1996) The Merck Index, , Chapman & Hall, New York:Ruiz-Herrera, J., San-Blas, G., Chitin synthesis as target for antifungal drugs (2003) Curr. Drug Targets Infect. Disord, 3, pp. 77-91Pauling, L., (1939) The Nature of Chemical Bond, , Cornell University Press, Ithaca, NY:Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., Assessing the accuracy of prediction algorithms for classification: An overview (2000) Bioinformatics, 16, pp. 412-424Randić, M., Resolution of ambiguities in structure-property studies by use of orthogonal descriptors (1991) J. Chem. Inf. Comput. Sci, 31, pp. 311-320Randić, M., Orthogonal molecular descriptors (1991) New J Chem, 15, pp. 517-525Randić, M., Correlation of enthalpy of octanes with orthogonal connectivity indices (1991) J. Mol. Struct. (Theochem), 233, pp. 45-59Estrada, E., Uriarte, E., Recent advances on the role of topological indices in drug discovery research (2001) Curr. Med. Chem, 8, pp. 1573-1588Estrada, E., Vilar, S., Uriarte, E., Gutierrez, Y., In silico studies toward the discovery of new anti-HIV nucleoside compounds with the use of TOPS-MODE and 2D/3D connectivity indices. 1. Pyrimidyl derivatives (2002) J. Chem. Inf. Comput. Sci, 42, pp. 1194-1203Wold, S., Erikson, L., (1995) Chemometric Methods in Molecular Design, pp. 309-318. , van de Waterbeemd H., (ed), VCH Publishers, Weinheim:Golbraikh, A., Tropsha, A., Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection (2002) Mol. Divers, 5, pp. 231-243Loeffler, J., Stevens, D.A., Antifungal drug resistance (2003) Clin. Infect. Dis, 36, pp. S31-S41Nosanchuk, J.D., Current status and future of antifungal therapy for systemic mycoses (2006) Recent Patents Anti-Infective Drug Discov, 1, pp. 75-84http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9032/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9032oai:repositorio.utb.edu.co:20.500.12585/90322023-04-24 09:56:12.003Repositorio Institucional UTBrepositorioutb@utb.edu.co