MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation
Despite the attention marker-less pose estimation has attracted in recent years, marker-based approaches still provide unbeatable accuracy under controlled environmental conditions. Thus, they are used in many fields such as robotics or biomedical applications but are primarily implemented through c...
- Autores:
-
Meza, Jhacson
Romero, Lenny A.
Marrugo, Andres G.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12383
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12383
- Palabra clave:
- Object Detection;
Deep Learning;
IOU
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_8a0dafa16baeb9d99c3facd7161352be |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12383 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
title |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
spellingShingle |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation Object Detection; Deep Learning; IOU LEMB |
title_short |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
title_full |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
title_fullStr |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
title_full_unstemmed |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
title_sort |
MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation |
dc.creator.fl_str_mv |
Meza, Jhacson Romero, Lenny A. Marrugo, Andres G. |
dc.contributor.author.none.fl_str_mv |
Meza, Jhacson Romero, Lenny A. Marrugo, Andres G. |
dc.subject.keywords.spa.fl_str_mv |
Object Detection; Deep Learning; IOU |
topic |
Object Detection; Deep Learning; IOU LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Despite the attention marker-less pose estimation has attracted in recent years, marker-based approaches still provide unbeatable accuracy under controlled environmental conditions. Thus, they are used in many fields such as robotics or biomedical applications but are primarily implemented through classical approaches, which require lots of heuristics and parameter tuning for reliable performance under different environments. In this work, we propose MarkerPose, a robust, real-time pose estimation system based on a planar target of three circles and a stereo vision system. MarkerPose is meant for high-accuracy pose estimation applications. Our method consists of two deep neural networks for marker point detection. A SuperPoint-like network for pixel-level accuracy keypoint localization and classification, and we introduce EllipSegNet, a lightweight ellipse segmentation network for sub-pixel-level accuracy keypoint detection. The marker's pose is estimated through stereo triangulation. The target point detection is robust to low lighting and motion blur conditions. We compared MarkerPose with a detection method based on classical computer vision techniques using a robotic arm for validation. The results show our method provides better accuracy than the classical technique. Finally, we demonstrate the suitability of MarkerPose in a 3D freehand ultrasound system, which is an application where highly accurate pose estimation is required. Code is available in Python and C++ at https://github.com/jhacsonmeza/MarkerPose. © 2021 IEEE. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T20:48:50Z |
dc.date.available.none.fl_str_mv |
2023-07-21T20:48:50Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12383 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CVPRW53098.2021.00141 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12383 |
identifier_str_mv |
10.1109/CVPRW53098.2021.00141 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/1/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/4/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/5/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.jpg |
bitstream.checksum.fl_str_mv |
6311013207b4c695b2f6b52da838385a e20ad307a1c5f3f25af9304a7a7c86b6 4460e5956bc1d1639be9ae6146a50347 4cbdf2b768f6bf4898e5fa97988d8683 0f63e7ab4812a269ecfb43c79cfe5b0d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021629929324544 |
spelling |
Meza, Jhacsonf82caa3d-d398-4c7c-8651-1d32adcd8925Romero, Lenny A.4e34aa8a-f981-4e1d-ae32-d45acb6abcf9Marrugo, Andres G.3d6cd388-d48f-4669-934f-49ca4179f5422023-07-21T20:48:50Z2023-07-21T20:48:50Z20212023https://hdl.handle.net/20.500.12585/1238310.1109/CVPRW53098.2021.00141Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDespite the attention marker-less pose estimation has attracted in recent years, marker-based approaches still provide unbeatable accuracy under controlled environmental conditions. Thus, they are used in many fields such as robotics or biomedical applications but are primarily implemented through classical approaches, which require lots of heuristics and parameter tuning for reliable performance under different environments. In this work, we propose MarkerPose, a robust, real-time pose estimation system based on a planar target of three circles and a stereo vision system. MarkerPose is meant for high-accuracy pose estimation applications. Our method consists of two deep neural networks for marker point detection. A SuperPoint-like network for pixel-level accuracy keypoint localization and classification, and we introduce EllipSegNet, a lightweight ellipse segmentation network for sub-pixel-level accuracy keypoint detection. The marker's pose is estimated through stereo triangulation. The target point detection is robust to low lighting and motion blur conditions. We compared MarkerPose with a detection method based on classical computer vision techniques using a robotic arm for validation. The results show our method provides better accuracy than the classical technique. Finally, we demonstrate the suitability of MarkerPose in a 3D freehand ultrasound system, which is an application where highly accurate pose estimation is required. Code is available in Python and C++ at https://github.com/jhacsonmeza/MarkerPose. © 2021 IEEE.9 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IEEE Computer Society Conference on Computer Vision and Pattern Recognition WorkshopsMarkerPose: Robust real-time planar target tracking for accurate stereo pose estimationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Object Detection;Deep Learning;IOULEMBCartagena de IndiasAndriluka, M., Iqbal, U., Insafutdinov, E., Pishchulin, L., Milan, A., Gall, J., Schiele, B. PoseTrack: A Benchmark for Human Pose Estimation and Tracking (2018) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, art. no. 8578640, pp. 5167-5176. Cited 237 times. ISBN: 978-153866420-9 doi: 10.1109/CVPR.2018.00542Basafa, E., Foroughi, P., Hossbach, M., Bhanushali, J., Stolka, P. Visual tracking for multi-modality computer-assisted image guidance (2017) Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 10135, art. no. 101352S. Cited 7 times. http://spie.org/x1848.xml ISBN: 978-151060715-6 doi: 10.1117/12.2254362Brown, A., Uneri, A., Silva, T.D., Manbachi, A., Siewerdsen, J.H. Design and validation of an open-source library of dynamic reference frames for research and education in optical tracking (2018) Journal of Medical Imaging, 5 (2), art. no. 021215. Cited 11 times. http://medicalimaging.spiedigitallibrary.org/journal.aspx doi: 10.1117/1.JMI.5.2.021215Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (2018) IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (4), pp. 834-848. Cited 10239 times. doi: 10.1109/TPAMI.2017.2699184Detone, D., Malisiewicz, T., Rabinovich, A. SuperPoint: Self-supervised interest point detection and description (2018) IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-June, art. no. 8575521, pp. 337-349. Cited 873 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-153866100-0 doi: 10.1109/CVPRW.2018.00060Ge, L., Ren, Z., Li, Y., Xue, Z., Wang, Y., Cai, J., Yuan, J. 3D hand shape and pose estimation from a single RGB image (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953612, pp. 10825-10834. Cited 234 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.01109Gupta, A., Thakkar, K., Gandhi, V., Narayanan, P.J. Nose, Eyes and Ears: Head Pose Estimation by Locating Facial Keypoints (Open Access) (2019) ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2019-May, art. no. 8683503, pp. 1977-1981. Cited 29 times. ISBN: 978-147998131-1 doi: 10.1109/ICASSP.2019.8683503He, K., Gkioxari, G., Dollar, P., Girshick, R. Mask R-CNN (Open Access) (2017) Proceedings of the IEEE International Conference on Computer Vision, 2017-October, art. no. 8237584, pp. 2980-2988. Cited 13335 times. http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000149 ISBN: 978-153861032-9 doi: 10.1109/ICCV.2017.322Hu, D., Detone, D., Malisiewicz, T. Deep charuco: Dark charuco marker pose estimation (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953882, pp. 8428-8436. Cited 40 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.00863Huang, Q., Zeng, Z. A Review on Real-Time 3D Ultrasound Imaging Technology (2017) BioMed Research International, 2017, art. no. 6027029. Cited 168 times. http://www.hindawi.com/journals/biomed/ doi: 10.1155/2017/6027029Kam, H.C., Yu, Y.K., Wong, K.H. An improvement on ArUco marker for pose tracking using kalman filter (Open Access) (2018) Proceedings - 2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018, art. no. 8441049, pp. 65-69. Cited 25 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8422066 ISBN: 978-153865889-5 doi: 10.1109/SNPD.2018.8441049Kim, J., Jeong, Y., Lee, H., Yun, H. Marker-based structural displacement measurement models with camera movement error correction using image matching and anomaly detection (Open Access) (2020) Sensors (Switzerland), 20 (19), art. no. 5676, pp. 1-24. Cited 8 times. https://www.mdpi.com/1424-8220/20/19/5676/pdfLee, J.Y., Lee, C.-S. Path planning for SCARA robot based on marker detection using feature extraction and, labelling (Open Access) (2018) International Journal of Computer Integrated Manufacturing, 31 (8), pp. 769-776. Cited 7 times. http://www.tandfonline.com/loi/tcim20 doi: 10.1080/0951192X.2018.1429669Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M., Mathis, M.W. Using DeepLabCut for 3D markerless pose estimation across species and behaviors (Open Access) (2019) Nature Protocols, 14 (7), pp. 2152-2176. Cited 415 times. http://www.natureprotocols.com/ doi: 10.1038/s41596-019-0176-0Redmon, J., Divvala, S., Girshick, R., Farhadi, A. You only look once: Unified, real-time object detection (Open Access) (2016) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, art. no. 7780460, pp. 779-788. Cited 22811 times. ISBN: 978-146738850-4 doi: 10.1109/CVPR.2016.91Ren, S., He, K., Girshick, R., Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (Open Access) (2017) IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (6), art. no. 7485869, pp. 1137-1149. Cited 16494 times. doi: 10.1109/TPAMI.2016.2577031Sarlin, P.-E., Detone, D., Malisiewicz, T., Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks (Open Access) (2020) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, art. no. 9157489, pp. 4937-4946. Cited 644 times. doi: 10.1109/CVPR42600.2020.00499Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J. Normalized object coordinate space for category-level 6D object pose and size estimation (Open Access) (2019) Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, art. no. 8953761, pp. 2637-2646. Cited 267 times. ISBN: 978-172813293-8 doi: 10.1109/CVPR.2019.00275http://purl.org/coar/resource_type/c_6501ORIGINALMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdfMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdfapplication/pdf4085073https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/1/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf6311013207b4c695b2f6b52da838385aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.txtMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.txtExtracted texttext/plain37758https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/4/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.txt4cbdf2b768f6bf4898e5fa97988d8683MD54THUMBNAILMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.jpgMeza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.jpgGenerated Thumbnailimage/jpeg8360https://repositorio.utb.edu.co/bitstream/20.500.12585/12383/5/Meza_MarkerPose_Robust_Real-Time_Planar_Target_Tracking_for_Accurate_Stereo_Pose_CVPRW_2021_paper.pdf.jpg0f63e7ab4812a269ecfb43c79cfe5b0dMD5520.500.12585/12383oai:repositorio.utb.edu.co:20.500.12585/123832023-07-22 00:18:15.228Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |