Hexagonal filters for ultrasound images

Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to disp...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9055
Acceso en línea:
https://hdl.handle.net/20.500.12585/9055
Palabra clave:
Hexagonal sampling
Speckle filtering
Ultrasound
Ultrasonics
Anisotropic diffusion filters
Interlaced samplings
Natural representation
Rectangular lattices
Sampling strategies
Speckle filtering
Ultrasound image enhancements
Ultrasound images
Pixels
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_89f2c0190c89f42658e5ac41e0241996
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9055
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Hexagonal filters for ultrasound images
title Hexagonal filters for ultrasound images
spellingShingle Hexagonal filters for ultrasound images
Hexagonal sampling
Speckle filtering
Ultrasound
Ultrasonics
Anisotropic diffusion filters
Interlaced samplings
Natural representation
Rectangular lattices
Sampling strategies
Speckle filtering
Ultrasound image enhancements
Ultrasound images
Pixels
title_short Hexagonal filters for ultrasound images
title_full Hexagonal filters for ultrasound images
title_fullStr Hexagonal filters for ultrasound images
title_full_unstemmed Hexagonal filters for ultrasound images
title_sort Hexagonal filters for ultrasound images
dc.subject.keywords.none.fl_str_mv Hexagonal sampling
Speckle filtering
Ultrasound
Ultrasonics
Anisotropic diffusion filters
Interlaced samplings
Natural representation
Rectangular lattices
Sampling strategies
Speckle filtering
Ultrasound image enhancements
Ultrasound images
Pixels
topic Hexagonal sampling
Speckle filtering
Ultrasound
Ultrasonics
Anisotropic diffusion filters
Interlaced samplings
Natural representation
Rectangular lattices
Sampling strategies
Speckle filtering
Ultrasound image enhancements
Ultrasound images
Pixels
description Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to display and process the images. The images were resampled on an interlaced grid. Interlaced sampling uses square pixels shifted half a pixel on alternate rows. Two types of hexagonal filters were designed and tested on ultrasound images: a statistical adaptive filter and an anisotropic diffusion filter. Results show improvements in signal-to-noise ratio and more natural representation of curved structures. © 2014 SPIE and IS&T.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:51Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:51Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Electronic Imaging; Vol. 23, Núm. 4
dc.identifier.issn.none.fl_str_mv 10179909
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9055
dc.identifier.doi.none.fl_str_mv 10.1117/1.JEI.23.4.043022
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210822856
7401718655
identifier_str_mv Journal of Electronic Imaging; Vol. 23, Núm. 4
10179909
10.1117/1.JEI.23.4.043022
Universidad Tecnológica de Bolívar
Repositorio UTB
57210822856
7401718655
url https://hdl.handle.net/20.500.12585/9055
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922977871&doi=10.1117%2f1.JEI.23.4.043022&partnerID=40&md5=48710a119f4b45a04a29ab9320dbb241
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9055/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021674585030656
spelling 2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Journal of Electronic Imaging; Vol. 23, Núm. 410179909https://hdl.handle.net/20.500.12585/905510.1117/1.JEI.23.4.043022Universidad Tecnológica de BolívarRepositorio UTB572108228567401718655Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to display and process the images. The images were resampled on an interlaced grid. Interlaced sampling uses square pixels shifted half a pixel on alternate rows. Two types of hexagonal filters were designed and tested on ultrasound images: a statistical adaptive filter and an anisotropic diffusion filter. Results show improvements in signal-to-noise ratio and more natural representation of curved structures. © 2014 SPIE and IS&T.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84922977871&doi=10.1117%2f1.JEI.23.4.043022&partnerID=40&md5=48710a119f4b45a04a29ab9320dbb241Hexagonal filters for ultrasound imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Hexagonal samplingSpeckle filteringUltrasoundUltrasonicsAnisotropic diffusion filtersInterlaced samplingsNatural representationRectangular latticesSampling strategiesSpeckle filteringUltrasound image enhancementsUltrasound imagesPixelsContreras Ortiz, Sonia HelenaFox M.D.Mersereau, R.M., The processing of hexagonally sampled two-dimensional signals (1979) Proc. IEEE, 67 (6), pp. 930-949Ehrhardt, J.C., MR data acquisition and reconstruction using efficient sampling schemes (1990) IEEE Trans. Med. Imaging, 9 (3), pp. 305-309Rattey, P.A., Lindgren, A.G., Sampling the 2-D radon transform (1981) IEEE Trans. Acoust. Speech Signal Process., 29 (5), pp. 994-1002Ehrhardt, J.C., Hexagonal fast Fourier transform with rectangular output (1993) IEEE Trans. Signal Process., 41 (3), pp. 1469-1472Laine, A.F., Hexagonal wavelet processing of digital mammography (1993) Med. Imaging, 1898, pp. 559-573Knaup, M., CT image reconstruction using hexagonal grids (2007) IEEE Nuclear Science Symposium Conference Record, 2007, NSS '07, 4, pp. 3074-3076Saranathan, M., Anthem: Anatomically tailored hexagonal MRI (2007) Magn. Reson. Imaging, 25 (7), pp. 1039-1047Quan, E., Lalush, D., Three-dimensional imaging properties of rotation- free square and hexagonal micro-CT systems (2010) IEEE Trans. Med. Imaging, 29 (3), pp. 916-923La Riviere, P.J., Vargas, P., Novel sampling strategies for x-ray fluorescence computed tomography (2008) Proc. SPIE, 7078, pp. 70780QHeintzmann, R., Sheppard, C.J.R., The sampling limit in fluorescence microscopy (2007) Micron, 38 (2), pp. 145-149Dixit, N., Sivaswamy, J., A novel approach to generate up-sampled tomographic images using combination of rotated hexagonal lattices (2010) National Conf. on Communications, pp. 1-5. , IEEE, Chennai, IndiaBosch, J., Improved spatiotemporal voxel space interpolation for 3D echocardiography with irregular sampling and multibeat fusion (2005) IEEE Ultrasonics Symp., 2, pp. 1232-1235. , IEEE, Rotterdam, The NetherlandsWang, Y., Stephens, D., O'Donnell, M., Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging (2002) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49 (12), pp. 1652-1664Chen, J., A monolithic three-dimensional ultrasonic transducer array for medical imaging (2007) J. Microelectromech. Syst., 16 (5), pp. 1015-1024Ortiz, S.H.C., Chiu, T., Fox, M.D., Ultrasound image enhancement: A review (2012) Biomed. Signal Process. Control, 7 (5), pp. 419-428Lee, J.-S., Digital image enhancement and noise filtering by use of local statistics (1980) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-2 (2), pp. 165-168Frost, V.S., A model for radar images and its application to adaptive digital filtering of multiplicative noise (1982) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (2), pp. 157-166Bamber, J.C., Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images (1986) Ultrasonics, 24 (1), pp. 41-44Dutt, V., Greenleaf, J.F., Adaptive speckle reduction filter for log-compressed b-scan images (1996) IEEE Trans. Med. Imaging, 15 (6), pp. 802-813Yongjian, Y., Acton, S.T., Speckle reducing anisotropic diffusion (2002) IEEE Trans. Image Process., 11 (11), pp. 1260-1270Abd-Elmoniem, K.Z., Youssef, A.B.M., Kadah, Y.M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Trans. Biomed. Eng., 49 (9), pp. 997-1014Krissian, K., Oriented speckle reducing anisotropic diffusion (2007) IEEE Trans. Image Process., 16 (5), pp. 1412-1424Zong, X., Laine, A.F., Geiser, E.A., Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing (1998) IEEE Trans. Med. Imaging, 17 (4), pp. 532-540Gupta, S., Chauhan, R., Sexana, S., Wavelet-based statistical approach for speckle reduction in medical ultrasound images (2004) Med. Biol. Eng. Comput., 42 (2), pp. 189-192Ortiz, S.H.C., Super-resolution of ultrasound images by displacement, averaging, and interlacing (2009) Proc. SPIE, 7265, p. 726519Ortiz, S.H.C., MacIone, J.J., Fox, M.D., Enhancement of ultrasound images by displacement, averaging, and interlacing (2010) J. Electron. Imaging, 19 (1), p. 011014Ortiz, S.H.C., Chiu, T., Fox, M.D., Hexagonal adaptive filtering on compound ultrasound images (2011) Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 4856-4859. , IEEE Engineering in Medicine and Biology Society, Boston, MAMersereau, R.M., Speake, T.C., The processing of periodically sampled multidimensional signals (1983) IEEE Trans. Acoust. Speech Signal Process., 31 (1), pp. 188-194He, X., Jia, W., Hexagonal structure for intelligent vision (2005) First Int. Conf. on Information and Communication Technologies, pp. 52-64. , IEEE, Karachi, PakistanWoodward, F., Muir, M., Hexagonal sampling (1984) Stanford Exploration Project, SEP-38, p. 12Petersen, D.P., Middleton, D., Sampling and reconstruction of wave-number-limited functions in n-dimensional Euclidean spaces (1962) Inf. Control, 5 (4), pp. 279-323Staunton, R., Hexagonal sampling in image processing (1999) Adv. Imaging Electron Phys., 107, pp. 231-307Jensen, J.A., Field: A program for simulating ultrasound systems (1996) Med. Biol. Eng. Comput., 34 (SUPPL. 1), pp. 351-352Jensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39 (2), pp. 262-267Fitz, A.P., Green, R.J., Fingerprint classification using a hexagonal fast Fourier transform (1996) Pattern Recognit., 29 (10), pp. 1587-1597Perona, P., Malik, J., Scale-space and edge detection using anisotropic diffusion (1990) IEEE Trans. Pattern Anal. Mach. Intell., 12 (7), pp. 629-639http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9055/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9055oai:repositorio.utb.edu.co:20.500.12585/90552023-05-25 15:53:28.289Repositorio Institucional UTBrepositorioutb@utb.edu.co