Hexagonal filters for ultrasound images
Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to disp...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9055
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9055
- Palabra clave:
- Hexagonal sampling
Speckle filtering
Ultrasound
Ultrasonics
Anisotropic diffusion filters
Interlaced samplings
Natural representation
Rectangular lattices
Sampling strategies
Speckle filtering
Ultrasound image enhancements
Ultrasound images
Pixels
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_89f2c0190c89f42658e5ac41e0241996 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9055 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Hexagonal filters for ultrasound images |
title |
Hexagonal filters for ultrasound images |
spellingShingle |
Hexagonal filters for ultrasound images Hexagonal sampling Speckle filtering Ultrasound Ultrasonics Anisotropic diffusion filters Interlaced samplings Natural representation Rectangular lattices Sampling strategies Speckle filtering Ultrasound image enhancements Ultrasound images Pixels |
title_short |
Hexagonal filters for ultrasound images |
title_full |
Hexagonal filters for ultrasound images |
title_fullStr |
Hexagonal filters for ultrasound images |
title_full_unstemmed |
Hexagonal filters for ultrasound images |
title_sort |
Hexagonal filters for ultrasound images |
dc.subject.keywords.none.fl_str_mv |
Hexagonal sampling Speckle filtering Ultrasound Ultrasonics Anisotropic diffusion filters Interlaced samplings Natural representation Rectangular lattices Sampling strategies Speckle filtering Ultrasound image enhancements Ultrasound images Pixels |
topic |
Hexagonal sampling Speckle filtering Ultrasound Ultrasonics Anisotropic diffusion filters Interlaced samplings Natural representation Rectangular lattices Sampling strategies Speckle filtering Ultrasound image enhancements Ultrasound images Pixels |
description |
Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to display and process the images. The images were resampled on an interlaced grid. Interlaced sampling uses square pixels shifted half a pixel on alternate rows. Two types of hexagonal filters were designed and tested on ultrasound images: a statistical adaptive filter and an anisotropic diffusion filter. Results show improvements in signal-to-noise ratio and more natural representation of curved structures. © 2014 SPIE and IS&T. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Electronic Imaging; Vol. 23, Núm. 4 |
dc.identifier.issn.none.fl_str_mv |
10179909 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9055 |
dc.identifier.doi.none.fl_str_mv |
10.1117/1.JEI.23.4.043022 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57210822856 7401718655 |
identifier_str_mv |
Journal of Electronic Imaging; Vol. 23, Núm. 4 10179909 10.1117/1.JEI.23.4.043022 Universidad Tecnológica de Bolívar Repositorio UTB 57210822856 7401718655 |
url |
https://hdl.handle.net/20.500.12585/9055 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922977871&doi=10.1117%2f1.JEI.23.4.043022&partnerID=40&md5=48710a119f4b45a04a29ab9320dbb241 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9055/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021674585030656 |
spelling |
2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Journal of Electronic Imaging; Vol. 23, Núm. 410179909https://hdl.handle.net/20.500.12585/905510.1117/1.JEI.23.4.043022Universidad Tecnológica de BolívarRepositorio UTB572108228567401718655Most of the devices for acquisition and display of medical images use rectangular lattices even though there are other sampling strategies that can be more efficient in terms of resolution. This paper proposes an approach for ultrasound image enhancement that uses a hexagonal sampling scheme to display and process the images. The images were resampled on an interlaced grid. Interlaced sampling uses square pixels shifted half a pixel on alternate rows. Two types of hexagonal filters were designed and tested on ultrasound images: a statistical adaptive filter and an anisotropic diffusion filter. Results show improvements in signal-to-noise ratio and more natural representation of curved structures. © 2014 SPIE and IS&T.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84922977871&doi=10.1117%2f1.JEI.23.4.043022&partnerID=40&md5=48710a119f4b45a04a29ab9320dbb241Hexagonal filters for ultrasound imagesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Hexagonal samplingSpeckle filteringUltrasoundUltrasonicsAnisotropic diffusion filtersInterlaced samplingsNatural representationRectangular latticesSampling strategiesSpeckle filteringUltrasound image enhancementsUltrasound imagesPixelsContreras Ortiz, Sonia HelenaFox M.D.Mersereau, R.M., The processing of hexagonally sampled two-dimensional signals (1979) Proc. IEEE, 67 (6), pp. 930-949Ehrhardt, J.C., MR data acquisition and reconstruction using efficient sampling schemes (1990) IEEE Trans. Med. Imaging, 9 (3), pp. 305-309Rattey, P.A., Lindgren, A.G., Sampling the 2-D radon transform (1981) IEEE Trans. Acoust. Speech Signal Process., 29 (5), pp. 994-1002Ehrhardt, J.C., Hexagonal fast Fourier transform with rectangular output (1993) IEEE Trans. Signal Process., 41 (3), pp. 1469-1472Laine, A.F., Hexagonal wavelet processing of digital mammography (1993) Med. Imaging, 1898, pp. 559-573Knaup, M., CT image reconstruction using hexagonal grids (2007) IEEE Nuclear Science Symposium Conference Record, 2007, NSS '07, 4, pp. 3074-3076Saranathan, M., Anthem: Anatomically tailored hexagonal MRI (2007) Magn. Reson. Imaging, 25 (7), pp. 1039-1047Quan, E., Lalush, D., Three-dimensional imaging properties of rotation- free square and hexagonal micro-CT systems (2010) IEEE Trans. Med. Imaging, 29 (3), pp. 916-923La Riviere, P.J., Vargas, P., Novel sampling strategies for x-ray fluorescence computed tomography (2008) Proc. SPIE, 7078, pp. 70780QHeintzmann, R., Sheppard, C.J.R., The sampling limit in fluorescence microscopy (2007) Micron, 38 (2), pp. 145-149Dixit, N., Sivaswamy, J., A novel approach to generate up-sampled tomographic images using combination of rotated hexagonal lattices (2010) National Conf. on Communications, pp. 1-5. , IEEE, Chennai, IndiaBosch, J., Improved spatiotemporal voxel space interpolation for 3D echocardiography with irregular sampling and multibeat fusion (2005) IEEE Ultrasonics Symp., 2, pp. 1232-1235. , IEEE, Rotterdam, The NetherlandsWang, Y., Stephens, D., O'Donnell, M., Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging (2002) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49 (12), pp. 1652-1664Chen, J., A monolithic three-dimensional ultrasonic transducer array for medical imaging (2007) J. Microelectromech. Syst., 16 (5), pp. 1015-1024Ortiz, S.H.C., Chiu, T., Fox, M.D., Ultrasound image enhancement: A review (2012) Biomed. Signal Process. Control, 7 (5), pp. 419-428Lee, J.-S., Digital image enhancement and noise filtering by use of local statistics (1980) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-2 (2), pp. 165-168Frost, V.S., A model for radar images and its application to adaptive digital filtering of multiplicative noise (1982) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-4 (2), pp. 157-166Bamber, J.C., Daft, C., Adaptive filtering for reduction of speckle in ultrasonic pulse-echo images (1986) Ultrasonics, 24 (1), pp. 41-44Dutt, V., Greenleaf, J.F., Adaptive speckle reduction filter for log-compressed b-scan images (1996) IEEE Trans. Med. Imaging, 15 (6), pp. 802-813Yongjian, Y., Acton, S.T., Speckle reducing anisotropic diffusion (2002) IEEE Trans. Image Process., 11 (11), pp. 1260-1270Abd-Elmoniem, K.Z., Youssef, A.B.M., Kadah, Y.M., Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion (2002) IEEE Trans. Biomed. Eng., 49 (9), pp. 997-1014Krissian, K., Oriented speckle reducing anisotropic diffusion (2007) IEEE Trans. Image Process., 16 (5), pp. 1412-1424Zong, X., Laine, A.F., Geiser, E.A., Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing (1998) IEEE Trans. Med. Imaging, 17 (4), pp. 532-540Gupta, S., Chauhan, R., Sexana, S., Wavelet-based statistical approach for speckle reduction in medical ultrasound images (2004) Med. Biol. Eng. Comput., 42 (2), pp. 189-192Ortiz, S.H.C., Super-resolution of ultrasound images by displacement, averaging, and interlacing (2009) Proc. SPIE, 7265, p. 726519Ortiz, S.H.C., MacIone, J.J., Fox, M.D., Enhancement of ultrasound images by displacement, averaging, and interlacing (2010) J. Electron. Imaging, 19 (1), p. 011014Ortiz, S.H.C., Chiu, T., Fox, M.D., Hexagonal adaptive filtering on compound ultrasound images (2011) Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 4856-4859. , IEEE Engineering in Medicine and Biology Society, Boston, MAMersereau, R.M., Speake, T.C., The processing of periodically sampled multidimensional signals (1983) IEEE Trans. Acoust. Speech Signal Process., 31 (1), pp. 188-194He, X., Jia, W., Hexagonal structure for intelligent vision (2005) First Int. Conf. on Information and Communication Technologies, pp. 52-64. , IEEE, Karachi, PakistanWoodward, F., Muir, M., Hexagonal sampling (1984) Stanford Exploration Project, SEP-38, p. 12Petersen, D.P., Middleton, D., Sampling and reconstruction of wave-number-limited functions in n-dimensional Euclidean spaces (1962) Inf. Control, 5 (4), pp. 279-323Staunton, R., Hexagonal sampling in image processing (1999) Adv. Imaging Electron Phys., 107, pp. 231-307Jensen, J.A., Field: A program for simulating ultrasound systems (1996) Med. Biol. Eng. Comput., 34 (SUPPL. 1), pp. 351-352Jensen, J.A., Svendsen, N.B., Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers (1992) IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39 (2), pp. 262-267Fitz, A.P., Green, R.J., Fingerprint classification using a hexagonal fast Fourier transform (1996) Pattern Recognit., 29 (10), pp. 1587-1597Perona, P., Malik, J., Scale-space and edge detection using anisotropic diffusion (1990) IEEE Trans. Pattern Anal. Mach. Intell., 12 (7), pp. 629-639http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9055/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9055oai:repositorio.utb.edu.co:20.500.12585/90552023-05-25 15:53:28.289Repositorio Institucional UTBrepositorioutb@utb.edu.co |