Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators

The main objective of this paper is the experimental investigation of the energy indexes of a cogeneration plant with Gas Turbines (GT) and Heat Recuperator Steam Generators (HRSGs) while changing its operational load. The energy indicators were determined using the following International Standards...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9103
Acceso en línea:
https://hdl.handle.net/20.500.12585/9103
Palabra clave:
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration plants
Energy utilization
Environmental impact
Flue gases
Gas turbines
Recuperators
Regression analysis
Steam generators
Research
Electronic equipment
Energy conservation
Energy efficiency
Heat balance
High temperature
Index method
Mathematical analysis
Oxide
Regression analysis
Research work
Temperature effect
Turbine
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_875f283d50d4fdb4c1b052dad1c80bf1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9103
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
title Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
spellingShingle Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration plants
Energy utilization
Environmental impact
Flue gases
Gas turbines
Recuperators
Regression analysis
Steam generators
Research
Electronic equipment
Energy conservation
Energy efficiency
Heat balance
High temperature
Index method
Mathematical analysis
Oxide
Regression analysis
Research work
Temperature effect
Turbine
title_short Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
title_full Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
title_fullStr Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
title_full_unstemmed Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
title_sort Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generators
dc.subject.keywords.none.fl_str_mv Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration plants
Energy utilization
Environmental impact
Flue gases
Gas turbines
Recuperators
Regression analysis
Steam generators
Research
Electronic equipment
Energy conservation
Energy efficiency
Heat balance
High temperature
Index method
Mathematical analysis
Oxide
Regression analysis
Research work
Temperature effect
Turbine
topic Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration
Energy indexes
Mathematic equations
Specific consumptions
Thermal efficiency
Cogeneration plants
Energy utilization
Environmental impact
Flue gases
Gas turbines
Recuperators
Regression analysis
Steam generators
Research
Electronic equipment
Energy conservation
Energy efficiency
Heat balance
High temperature
Index method
Mathematical analysis
Oxide
Regression analysis
Research work
Temperature effect
Turbine
description The main objective of this paper is the experimental investigation of the energy indexes of a cogeneration plant with Gas Turbines (GT) and Heat Recuperator Steam Generators (HRSGs) while changing its operational load. The energy indicators were determined using the following International Standards and Codes: ASME PTC1, ASME PTC 22 and ASME PTC 4.4. The results of energy calculations indexes are in the form of curves. The mathematical equations of the curves corresponding to the real energy indexes are obtained applying multivariate regression. The main research results correspond to a process plant with nominal capacity of 4800 kW. The range of lower energy consumption values obtained for the HR of the turbine are around 13000 kJ/kW·h, while for the Heat Rate of the plant is 7000 kJ/kW·h. For these values of the Heat Rate (HR), the electrical output remains in the environment of 3500 kW. It was found that the thermal efficiency of HRSGs varies from 50 to 60% with very high values of sensible heat losses in flue gases due to the operation with high excess air and high temperatures of the gases at the outlet of HRSGs. The contributions of this research are used in operational management in order to reduce fuel consumption and environmental impact on the generation of electricity and heat cogeneration plant evaluated. The results of this research in the plant have been implemented to monitor the transaction on the basis of the variation in real-time energy indexes evaluated, besides the traditional control of the parameters only, which is more effective.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:57Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:57Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv CTyF - Ciencia, Tecnologia y Futuro; Vol. 4, Núm. 5; pp. 85-100
dc.identifier.issn.none.fl_str_mv 01225383
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9103
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55516284800
55516586900
identifier_str_mv CTyF - Ciencia, Tecnologia y Futuro; Vol. 4, Núm. 5; pp. 85-100
01225383
Universidad Tecnológica de Bolívar
Repositorio UTB
55516284800
55516586900
url https://hdl.handle.net/20.500.12585/9103
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84870798096&partnerID=40&md5=8b5a6f4239bf881ca4053b432ab7b6f0
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9103/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724582182912
spelling 2020-03-26T16:32:57Z2020-03-26T16:32:57Z2012CTyF - Ciencia, Tecnologia y Futuro; Vol. 4, Núm. 5; pp. 85-10001225383https://hdl.handle.net/20.500.12585/9103Universidad Tecnológica de BolívarRepositorio UTB5551628480055516586900The main objective of this paper is the experimental investigation of the energy indexes of a cogeneration plant with Gas Turbines (GT) and Heat Recuperator Steam Generators (HRSGs) while changing its operational load. The energy indicators were determined using the following International Standards and Codes: ASME PTC1, ASME PTC 22 and ASME PTC 4.4. The results of energy calculations indexes are in the form of curves. The mathematical equations of the curves corresponding to the real energy indexes are obtained applying multivariate regression. The main research results correspond to a process plant with nominal capacity of 4800 kW. The range of lower energy consumption values obtained for the HR of the turbine are around 13000 kJ/kW·h, while for the Heat Rate of the plant is 7000 kJ/kW·h. For these values of the Heat Rate (HR), the electrical output remains in the environment of 3500 kW. It was found that the thermal efficiency of HRSGs varies from 50 to 60% with very high values of sensible heat losses in flue gases due to the operation with high excess air and high temperatures of the gases at the outlet of HRSGs. The contributions of this research are used in operational management in order to reduce fuel consumption and environmental impact on the generation of electricity and heat cogeneration plant evaluated. The results of this research in the plant have been implemented to monitor the transaction on the basis of the variation in real-time energy indexes evaluated, besides the traditional control of the parameters only, which is more effective.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84870798096&partnerID=40&md5=8b5a6f4239bf881ca4053b432ab7b6f0Research on energy indexes of cogenerated plants with gas turbines and heat recuperator steam generatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1CogenerationEnergy indexesMathematic equationsSpecific consumptionsThermal efficiencyCogenerationEnergy indexesMathematic equationsSpecific consumptionsThermal efficiencyCogeneration plantsEnergy utilizationEnvironmental impactFlue gasesGas turbinesRecuperatorsRegression analysisSteam generatorsResearchElectronic equipmentEnergy conservationEnergy efficiencyHeat balanceHigh temperatureIndex methodMathematical analysisOxideRegression analysisResearch workTemperature effectTurbineBermúdez-Valencia L.F.Sarria-López B.General Instructions for Power Test Code, , ANSI/ASME PTC 1-2004(R2009). American Society of Mechanical Engineers / 31-Dec-2004. ISBN: 0791829227Performance Test Code on Gas Turbines, , ANSI/ASME PTC 22-1997 (R2006). American Society of Mechanical Engineers / 30-May-2006. ISBN: 0791829545Gas Turbine Heat Recovery Steam Generators, , ANSI/ASME PTC 4.4-1981(R1992), American Society of Mechanical Engineers / 01-jan-1981. ISBN: 9780791831397Balli, O., Aras, H., Hepbasli, A., Thermodynamic and thermoeconomic analysis of a trigeneration (TRIGEN) system with a gas-diesel machine: Part II - An application (2010) Energy Conversion and Management, 51 (11), pp. 2260-2271Baukal, C.E., (2000) Heat Transfer in Industrial Combustion, , New York: CRC Press LLCBermúdez, L.F., Método para el control operacional en línea de la generación de electricidad en turbogas: Caso Biofilm S.A. planta Cartagena (2010) Tesis de Maestría Fac. Ing, 191p. , Universidad Tecnológica de Bolívar. Cartagena, ColombiaBoyce, M., (2002) Gas Turbine Engineering Handbook, , 2nd ed. Houston: Bristish libraryBruno, J., Ortega, V., Coronas, A., Integration of cooling systems into gas turbine trigeneration systems using biogás: Case study of a sewage treatment plant (2009) Applied Energy, 86 (6), pp. 837-847Cengel, Y.A., (2008) Termodinámica, , Sexta Edición. New York: McGraww-Hill CompaniesChandok, J., Kar, I., Tuli, S., Estimation of Furnace exit Gas Temperature (FEGT) using optimized radial basis and back-propagation neural networks (2008) Energy Conversion and Management, 49 (8), pp. 1989-1998Coskun, C., Oktay, Z., Ilten, N., A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition (2009) Energy, 34 (11), pp. 1898-1902Eicher, A., Calculation of combustion gas flow rate and residence time based on stack gas data (2000) Waste Management, 20 (5-6), pp. 403-407(2003) Manual de Gestión Energética Integral, , E2 Energía Eficiente, Biofilm S.A., Planta CartagenaGalip, T., Durriye, B., Thermoeconomic analysis of a trigeneration system (2004) Applied Thermal Engineering, 24 (17-18), pp. 2689-2699Ganapathy, V., (1993) Applied Heat Transfer, , Tulsa: Penn Well Books CompanyGanapathy, V., (2003) Industrial Boiler and Heat Recovery Steam Generators, , New York: Marcel DekkerGarcia, G.S., Fraile, C.D., (2008) Cogeneración-diseño Operación y Mantenimiento de Plantas, , 2nd. Ed. Madrid: Diaz SantosHorlock, J.H., (2003) Advanced Gas Turbine Cycles, , UK: Elsevier Science(2008) Análisis Del Potencial de Cogeneración de Alta Eficiencia en España. 2010 - 2015-2020, , IDAE, Instituto para la Diversificación y el Ahorro de EnergíaKehlhofer, R., (1997) Combined - Cycle Gas and Steam Turbine Power Plant, , Oklahoma: Penn WellKenneth, E., Heselton, P.E., (2005) Boiler Operatos Handbook, , New York: The Fairmont PressKizniezova, N.V., (1987) Cálculo Térmico de Agregados de Calderas, , Método Normativo de la Unión Sovíetica. Moscú: EnergíaKyle, B.G., (1984) Chemical and Process Thermodynamics, , Englewood Cliffs: NJ Prentice - HallPitanga, R., Hacon, D., Tessarollo, A., Reis, J., Thermodynamic analysis of trigeneration systems taking into account refrigeration, heating and electricity load demands (2010) Energy and Buildings, 42 (12), pp. 2323-2330Sala, J., (1994) Cogeneration. Thermodynamic, Technological and Economic, , Bilbao: Servicio Editorial Universidad del VascoSantos, L., Tecnología de monitoreo, control, optimización y diagnostico operacional para el incremento de la eficiencia energética en centrales termoeléctricas (1999) Tesis Doctoral, 186p. , Universidad de Cienfuegos, Cienfuegos, CubaSchicktanz, M., Waple, J., Henning, H., Primary energy and economic analysis of combined heating, cooling and power systems (2011) Energy, 36 (1), pp. 575-585Stultz, S.C., Kitto, J.B., (1992) Steam: Its Generation and Use, , 40th edition. Ohio: The Babcock and Wilcox Company, BarbertonTeopa, E., Picón, M., Rodríguez, M., Thermal integration of trigeneration systems (2005) Applied Thermal Engineering, 25 (7), pp. 973-984Troyanovski, B.M., Filippov, G.A., Bulkin, A.E., (1987) Turbinas de Vapor y de Gas de Las Centrales Nucleoeléctricas, , Moscú: Editorial MirYrjölä, J., Paavilainen, J., Sillanpää, M., Modelling and experimental studies on heat transfer in the convection section of a biomass boiler. Inter (2006) J. of Enery Reser., 30 (12), pp. 939-953http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9103/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9103oai:repositorio.utb.edu.co:20.500.12585/91032021-02-02 15:27:54.92Repositorio Institucional UTBrepositorioutb@utb.edu.co