Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light
We propose a three-dimensional (3D) multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration. To the best of our knowledge, these techniques have not been combined as a multimodal imaging t...
- Autores:
-
Meza, Jhacson
Contreras Ortiz, Sonia Helena
Romero, Lenny A
Marrugo Hernández, Andrés Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10356
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10356
- Palabra clave:
- Ultrasound
Structured-light
Three-dimension
Multimodal medical imaging
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_869d730ec89e91f33f5f65202355044f |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10356 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
title |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
spellingShingle |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light Ultrasound Structured-light Three-dimension Multimodal medical imaging LEMB |
title_short |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
title_full |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
title_fullStr |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
title_full_unstemmed |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
title_sort |
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light |
dc.creator.fl_str_mv |
Meza, Jhacson Contreras Ortiz, Sonia Helena Romero, Lenny A Marrugo Hernández, Andrés Guillermo |
dc.contributor.author.none.fl_str_mv |
Meza, Jhacson Contreras Ortiz, Sonia Helena Romero, Lenny A Marrugo Hernández, Andrés Guillermo |
dc.subject.keywords.spa.fl_str_mv |
Ultrasound Structured-light Three-dimension Multimodal medical imaging |
topic |
Ultrasound Structured-light Three-dimension Multimodal medical imaging LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
We propose a three-dimensional (3D) multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration. To the best of our knowledge, these techniques have not been combined as a multimodal imaging technique. The system complements the internal 3D information acquired with ultrasound with the external surface measured with the structured light technique. Moreover, the ultrasound probe’s optical tracking for pose estimation was implemented based on a convolutional neural network. Experimental results show the system’s high accuracy and reproducibility, as well as its potential for preoperative and intraoperative applications. The experimental multimodal error, or the distance from two surfaces obtained with different modalities, was 0.12 mm |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-06T12:30:11Z |
dc.date.available.none.fl_str_mv |
2021-08-06T12:30:11Z |
dc.date.issued.none.fl_str_mv |
2021-05-21 |
dc.date.submitted.none.fl_str_mv |
2021-08-05 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Jhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero Perez, and Andrés G. Marrugo "Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light," Optical Engineering 60(5), 054106 (21 May 2021). ttps://doi.org/10.1117/1.OE.60.5.054106 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10356 |
dc.identifier.doi.none.fl_str_mv |
10.1117/1.OE.60.5.054106 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Jhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero Perez, and Andrés G. Marrugo "Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light," Optical Engineering 60(5), 054106 (21 May 2021). ttps://doi.org/10.1117/1.OE.60.5.054106 10.1117/1.OE.60.5.054106 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10356 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.format.size.none.fl_str_mv |
14 páginas |
dc.coverage.spatial.none.fl_str_mv |
Colombia |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Optical Engineering 60(5), 054106 (21 May 2021). |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/1/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/4/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/5/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 35d1f8dbd9a48a40621787119a95d9c3 4460e5956bc1d1639be9ae6146a50347 a92b32049d1e76ca997a87141a018d86 cb19595add5d8da4dc5cd85844cebfb2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021703489028096 |
spelling |
Meza, Jhacsonf82caa3d-d398-4c7c-8651-1d32adcd8925Contreras Ortiz, Sonia Helena1d56d7f5-97c9-4429-b47d-48ebe97de2a8Romero, Lenny A4e34aa8a-f981-4e1d-ae32-d45acb6abcf9Marrugo Hernández, Andrés Guillermo3d6cd388-d48f-4669-934f-49ca4179f542Colombia2021-08-06T12:30:11Z2021-08-06T12:30:11Z2021-05-212021-08-05Jhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero Perez, and Andrés G. Marrugo "Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light," Optical Engineering 60(5), 054106 (21 May 2021). ttps://doi.org/10.1117/1.OE.60.5.054106https://hdl.handle.net/20.500.12585/1035610.1117/1.OE.60.5.054106Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWe propose a three-dimensional (3D) multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration. To the best of our knowledge, these techniques have not been combined as a multimodal imaging technique. The system complements the internal 3D information acquired with ultrasound with the external surface measured with the structured light technique. Moreover, the ultrasound probe’s optical tracking for pose estimation was implemented based on a convolutional neural network. Experimental results show the system’s high accuracy and reproducibility, as well as its potential for preoperative and intraoperative applications. The experimental multimodal error, or the distance from two surfaces obtained with different modalities, was 0.12 mmapplication/pdf14 páginasenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Optical Engineering 60(5), 054106 (21 May 2021).Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured lightinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1UltrasoundStructured-lightThree-dimensionMultimodal medical imagingLEMBCartagena de IndiasInvestigadoresP. Mascagni et al., “New intraoperative imaging technologies: innovating the surgeon’s eye toward surgical precision,” J. Surg. Oncol. 118, 265–282 (2018).E. J. R. van Beek et al., “Value of MRI in medicine: more than just another test?” J. Magn. Reson. Imaging 49, e14–e25 (2019).S. H. C. Ortiz, T. Chiu, and M. D. Fox, “Ultrasound image enhancement: a review,” Biomed. Signal Process. Control 7(5), 419–428 (2012).Q. Huang and Z. Zeng, “A review on real-time 3d ultrasound imaging technology,” Biomed. Res. Int. 2017, 6027029 (2017).E. Colley et al., “A methodology for non-invasive 3-d surveillance of arteriovenous fistulae using freehand ultrasound,” IEEE Trans. Biomed. Eng. 65(8), 1885–1891 (2018).S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Lasers Eng. 106, 119–131 (2018).A. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for threedimensional surface metrology: a review [Invited],” J. Opt. Soc. Am. A 37(9), B60–18 (2020).F. Zhang et al., “Coaxial projective imaging system for surgical navigation and telementoring,” J. Biomed. Opt. 24, 105002 (2019).S. Van der Jeught and J. J. J. Dirckx, “Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation,” J. Biomed. Opt. 22, 016008 (2017).T. T. Quang et al., “Fluorescence imaging topography scanning system for intraoperative multimodal imaging,” PLoS One 12, e0174928 (2017).E. M. A. Anas, P. Mousavi, and P. Abolmaesumi, “A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy,” Med. Image Anal. 48, 107–116 (2018).M. Anzidei et al., “Imaging-guided chest biopsies: techniques and clinical results,” Insights Imaging 8(4), 419–428 (2017).A. K. Bowden et al., “Optical technologies for improving healthcare in low-resource settings: introduction to the feature issue,” Biomed. Opt. Express 11, 3091–3094 (2020).S. R. Cherry, “Multimodality imaging: beyond PET/CT and SPECT/CT,” Semin. Nucl. Med. 39(5), 348–353 (2009).T. L. Walker, R. Bamford, and M. Finch-Jones, “Intraoperative ultrasound for the colorectal surgeon: current trends and barriers,” ANZ J. Surg. 87(9), 671–676 (2017).B. Li et al., “Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer,” Rev. Sci. Instrum. 85(5), 053703 (2014).T. A. N. Hernes et al., “Computer-assisted 3d ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives,” Int. J. Med. Rob. Comput. Assisted Surg. 2(1), 45–59 (2006).F. Lindseth et al., “Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3d ultrasound,” Comput. Aided Surg. 8(2), 49–69 (2003).H. Fatakdawala et al., “Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques,” Biomed. Opt. Express 4(9), 1724–1741 (2013).Y. Li, J. Chen, and Z. Chen, “Multimodal intravascular imaging technology for characterization of atherosclerosis,” J. Innovative Opt. Health Sci. 13(1), 2030001 (2020). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-12 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-useC. Mela, F. Papay, and Y. Liu, “Novel multimodal, multiscale imaging system with augmented reality,” Diagnostics 11(3), 441 (2021)D. M. McClatchy, III et al., “Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue,” Phys. Med. Biol. 62(23), 8983 (2017).O. V. Olesen et al., “Motion tracking for medical imaging: a nonvisible structured light tracking approach,” IEEE Trans. Med. Imaging 31(1), 79–87 (2012).L. Pino-Almero et al., “Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables,” J. Biomed. Opt. 21(11), 116001 (2016).C.-W. J. Cheung et al., “Freehand three-dimensional ultrasound system for assessment of scoliosis,” J. Orthop. Translat. 3(3), 123–133 (2015).R. Vairavan et al., “A brief on breast carcinoma and deliberation on current non-invasive imaging techniques for detection,” Curr. Med. Imaging Rev. 13, 85–121 (2017).F. Šroubek et al., “A computer-assisted system for handheld whole-breast ultrasonography,” Int. J. Comput. Assist. Radiol. Surg. 14(3), 509–516 (2019)W. Norhaimi et al., “Breast surface variation phase map analysis with digital fringe projection,” Proc. SPIE 11197, 1119717 (2019).S. Horvath et al., “Towards an ultrasound probe with vision: structured light to determine surface orientation,” Lect. Notes Comput. Sci. 7264, 58–64 (2011).E. Basafa et al., “Visual tracking for multi-modality computer-assisted image guidance,” Proc. SPIE 10135, 101352S (2017).S.-Y. Sun, M. Gilbertson, and B. W. Anthony, “Probe localization for freehand 3d ultrasound by tracking skin features,” Lect. Notes Comput. Sci. 8674, 365–372 (2014).J. Wang et al., “Ultrasound tracking using probesight: camera pose estimation relative to external anatomy by inverse rendering of a prior high-resolution 3d surface map,” in IEEE Winter Conf. Appl. Comput. Vision, IEEE, pp. 825–833 (2017)..-W. Hsurager, et al., “Comparison of freehand 3-d ultrasound calibration techniques using a stylus,” Ultrasound Med. Biol. 34(10), 1610–1621 (2008).R. W. Prager et al., “Rapid calibration for 3-d freehand ultrasound,” Ultrasound Med. Biol. 24(6), 855–869 (1998).L. Mercier et al., “A review of calibration techniques for freehand 3-d ultrasound systems,” Ultrasound Med. Biol. 31(4), 449–471 (2005).F. Torres et al., “Image tracking and volume reconstruction of medical ultrasound,” Rev. mexicana ingeniera biomed. 33(2), 101–115 (2012).L. Lu et al., “Motion induced error reduction methods for phase shifting profilometry: a review,” Opt. Lasers Eng. 141, 106573 (2021).R. Juarez-Salazar et al., “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Appl. Opt. 58(18), 4828–4834 (2019)S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006)Y. Hu et al., “Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks,” Lect. Notes Comput. Sci. 10555, 105–115 (2017).J. Meza et al., “A low-cost multi-modal medical imaging system with fringe projection profilometry and 3D freehand ultrasound,” Proc. SPIE 11330, 1133004 (2020).J. Meza, L. A. Romero, and A. G. Marrugo, “Markerpose: robust real-time planar target tracking for accurate stereo pose estimation,” https://arxiv.org/abs/2105.00368 (2021).D. Hu, D. DeTone, and T. Malisiewicz, “Deep ChArUco: dark ChArUco marker pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 8436–8444 (2019).D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: self-supervised interest point detection and description,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops, pp. 224–236 (2018).Y. Sun, “Analysis for center deviation of circular target under perspective projection,” Eng. Comput. 36(7), 2403–2413 (2019). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-13 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-useP.-W. Hsu et al., “Freehand 3D ultrasound calibration: a review,” in Advanced Imaging in Biology and Medicine, C. W. Sensen and B. Hallgrímsson, eds., pp. 47–84, Springer, Berlin, Heidelberg (2009).Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).S. Zhang, High-Speed 3D Imaging with Digital Fringe Projection Techniques, CRC Press (2016).. Lindseth et al., “Probe calibration for freehand 3-d ultrasound,” Ultrasound Med. Biol. 29(11), 1607–1623 (2003).B. E. Schaafsma et al., “Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer,” Br. J. Surg. 100(8), 1037 (2013).http://purl.org/coar/resource_type/c_2df8fbb1LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALOptical_Engineering_2021_Andres Guillermo Mar.pdfOptical_Engineering_2021_Andres Guillermo Mar.pdfapplication/pdf3374146https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/1/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf35d1f8dbd9a48a40621787119a95d9c3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTOptical_Engineering_2021_Andres Guillermo Mar.pdf.txtOptical_Engineering_2021_Andres Guillermo Mar.pdf.txtExtracted texttext/plain47315https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/4/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf.txta92b32049d1e76ca997a87141a018d86MD54THUMBNAILOptical_Engineering_2021_Andres Guillermo Mar.pdf.jpgOptical_Engineering_2021_Andres Guillermo Mar.pdf.jpgGenerated Thumbnailimage/jpeg89769https://repositorio.utb.edu.co/bitstream/20.500.12585/10356/5/Optical_Engineering_2021_Andres%20Guillermo%20Mar.pdf.jpgcb19595add5d8da4dc5cd85844cebfb2MD5520.500.12585/10356oai:repositorio.utb.edu.co:20.500.12585/103562023-05-26 16:23:49.287Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |