A boundary element method formulation for modal analysis of doubly curved thick shallow shells
The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary e...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8991
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8991
- Palabra clave:
- Boundary element method
Doubly curved shallow shells
Dual reciprocity boundary element method
Free vibration
Modal analysis
Thick shells
Elasticity
Modal analysis
Plates (structural components)
Sailing vessels
Shear deformation
Shear flow
Shells (structures)
Thin walled structures
Time domain analysis
Vibration analysis
Boundary element formulations
Computational technique
Dual reciprocity boundary element method
Free vibration
Fundamental solutions
Shallow shells
Shear deformable plate
Thick shells
Boundary element method
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_83e9143bef6d715a661cd7e39dff04dc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8991 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
title |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
spellingShingle |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells Boundary element method Doubly curved shallow shells Dual reciprocity boundary element method Free vibration Modal analysis Thick shells Elasticity Modal analysis Plates (structural components) Sailing vessels Shear deformation Shear flow Shells (structures) Thin walled structures Time domain analysis Vibration analysis Boundary element formulations Computational technique Dual reciprocity boundary element method Free vibration Fundamental solutions Shallow shells Shear deformable plate Thick shells Boundary element method |
title_short |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
title_full |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
title_fullStr |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
title_full_unstemmed |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
title_sort |
A boundary element method formulation for modal analysis of doubly curved thick shallow shells |
dc.subject.keywords.none.fl_str_mv |
Boundary element method Doubly curved shallow shells Dual reciprocity boundary element method Free vibration Modal analysis Thick shells Elasticity Modal analysis Plates (structural components) Sailing vessels Shear deformation Shear flow Shells (structures) Thin walled structures Time domain analysis Vibration analysis Boundary element formulations Computational technique Dual reciprocity boundary element method Free vibration Fundamental solutions Shallow shells Shear deformable plate Thick shells Boundary element method |
topic |
Boundary element method Doubly curved shallow shells Dual reciprocity boundary element method Free vibration Modal analysis Thick shells Elasticity Modal analysis Plates (structural components) Sailing vessels Shear deformation Shear flow Shells (structures) Thin walled structures Time domain analysis Vibration analysis Boundary element formulations Computational technique Dual reciprocity boundary element method Free vibration Fundamental solutions Shallow shells Shear deformable plate Thick shells Boundary element method |
description |
The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary element method formulation is presented. The proposed formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear-deformable plates. We modeled shallow shells by coupling the boundary element formulation of a shear-deformable plate and the two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated by the dual reciprocity boundary element method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2015 Elsevier Inc. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:43Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:43Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-3600 |
dc.identifier.issn.none.fl_str_mv |
0307904X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8991 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.apm.2015.09.082 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
24537991200 56974175900 |
identifier_str_mv |
Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-3600 0307904X 10.1016/j.apm.2015.09.082 Universidad Tecnológica de Bolívar Repositorio UTB 24537991200 56974175900 |
url |
https://hdl.handle.net/20.500.12585/8991 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc. |
publisher.none.fl_str_mv |
Elsevier Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958163726&doi=10.1016%2fj.apm.2015.09.082&partnerID=40&md5=09ba19a7f4dbcbc770954c259f8ccafc |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8991/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021617151377408 |
spelling |
2020-03-26T16:32:43Z2020-03-26T16:32:43Z2016Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-36000307904Xhttps://hdl.handle.net/20.500.12585/899110.1016/j.apm.2015.09.082Universidad Tecnológica de BolívarRepositorio UTB2453799120056974175900The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary element method formulation is presented. The proposed formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear-deformable plates. We modeled shallow shells by coupling the boundary element formulation of a shear-deformable plate and the two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated by the dual reciprocity boundary element method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2015 Elsevier Inc.The authors are grateful to the Research Office of Universidad Tecnológica de Bolívar for supporting this research work.Recurso electrónicoapplication/pdfengElsevier Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958163726&doi=10.1016%2fj.apm.2015.09.082&partnerID=40&md5=09ba19a7f4dbcbc770954c259f8ccafcA boundary element method formulation for modal analysis of doubly curved thick shallow shellsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodDoubly curved shallow shellsDual reciprocity boundary element methodFree vibrationModal analysisThick shellsElasticityModal analysisPlates (structural components)Sailing vesselsShear deformationShear flowShells (structures)Thin walled structuresTime domain analysisVibration analysisBoundary element formulationsComputational techniqueDual reciprocity boundary element methodFree vibrationFundamental solutionsShallow shellsShear deformable plateThick shellsBoundary element methodUseche Vivero, JairoHarnish C.Banerjee, P.K., Kobayashi, S., (1992) Advanced Dynamic Analysis by Boundary Element Methods, , Springer, LondonBayod, J.J., Yamazaki, T., Kamata, M., Prediction of vibration energy levels on structures using wave intensity analysis based on experimental data (2007) J. Syst. Des. Dyn., 1 (1), pp. 51-62Beskos, D.E., Maier, G., (2003) Dynamic Analysis of Structures and Structural Systems Boundary Element Analysis in Solid Mechanics, , Springer-Verlag ViennaBouthier, O.M., Bernhard, R.J., Simple models of the energetics of transversely vibrating plates (1995) J. Sound Vib., 182 (1), pp. 149-164Davies, T.W., Moslehy, F.A., Modal analysis of plates using the dual reciprocity boundary element method (1994) Eng. Anal. Bound. Elem., 14, pp. 357-362Dirgantara, T., Aliabadi, M.H., A new boundary element formulation for shear deformable shells analysis. (1999) Int. J. Numer. Methods Eng., 45, pp. 1257-1275Duddeck, F.M., (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform, , Springer, New YorkEwins, D.J., (2000) Modal Testing, Theory, Practice, and Application (Mechanical Engineering Research Studies: Engineering Dynamics Series), , Research Studies PressAllemang, R., De Clerck, J., Niezrecki, C., Wicks, A., Topics in modal analysis (2013) Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 7. , (Conference Proceedings of the Society for Experimental Mechanics Series)Gao, X.W., Davies, T.G., (2002) Boundary Element Programming in Mechanics, , Cambridge University Press, CambridgeHall, W.S., (2013) The Boundary Element Method (Solid Mechanics and its Applications), , Springer, New YorkJong-Shyong, W., (2014) Analytical and Numerical Methods for Vibration Analyses, , WileyDoyle, J.F., (1991) Static and Dynamic Analysis of Structures: With an Emphasis on Mechanics and Computer Matrix Methods (Solid Mechanics and Its Applications), , SpringerKamiya, N., Sawaki, Y., Plate bending analysis by the dual reciprocity boundary elements (1988) Eng. Anal., 5 (1), pp. 36-40Langley, R.S., A wave intensity analysis of high frequency vibrations (1994) Philos. Trans. R. Soc. A, 346, pp. 489-499Lyon, R., DeJong, R., (1995) Theory and Application of Statistical Energy Analysis, , Butterworth-HeinemannLyon, R.H., Statistical analysis of power injection and response in structures and rooms. (1969) J. Acoust. Soc. Am., 45 (3)Maia, N., Theoretical and Experimental Modal Analysis (Mechanical Engineering Research Studies) (1997) Engineering Control Series, 9,, , Research Studies PressNardini, C.A., Brebbia, D., A new approach to free vibration analysis using boundary elements. in: Boundary Elements Methods in Engineering (1982), 26, pp. 312-326. , (Eds.), Springer-Verlag, BerlinPartridge, P.W., Brebbia, C.A., Wrobel, L.C., (1992) The Dual Reciprocity Boundary Element Method, , Computational Mechanics Publications, SouthamptonProvidakis, C.P., Beskos, D.E., Dynamic analysis of plates by boundary elements (1999) Appl. Mech. Rev., 52 (7), pp. 213-236Providakis, C.P., Beskos, D.E., Free and forced vibrations of shallow shells by boundary and interior elements (1991) Comput. Methods Appl. Mech. Eng., 92, pp. 55-74Manolis, G.D., Beskos, D.E., (1998) Boundary Element Methods in Elastodynamics, , Unwin-Hyman, LondonMukherjee, S., The boundary element method (2013) Int. J. Comput. Methods, 10 (6), pp. 1-90Rashed, Y., (2000) Boundary Element Formulation for Thick Plates., , WIT Press, Southampton, BostonReddy, J.N., (2004) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, , CRC Press, New YorkReissner, E., On transverse vibration of thin, shallow elastic shells (1955) Q. Appl. Math., 13 (2), pp. 169-176Katsikadelis, J.T., (2014) The Boundary Element Method for Plate Analysis., , Elsevier, San DiegoTelles, J.C.F., A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals (1987) Int. J. Numer. Methods Eng., 24, pp. 959-973Sapountzakis, E.J., (2010) Recent Developments in Boundary Element Methods, , WIT Press, BostonUseche, J., Albuquerque, E.L., Dynamic analysis of shear deformable plates using the dual reciprocity method (2012) Eng. Anal. Boundary Elem. J., 36 (11), pp. 627-632Useche, J., Albuquerque, E.L., Sollero, P., Harmonic analysis of shear deformable orthotropic cracked plates using the boundary element method (2012) Eng. Anal. Boundary Elem. J., 36 (11), pp. 1528-1535Schweizerhof, J., Wang, K., Study on free vibration of moderately thick orthotropic laminated shallow shells by boundary-domain elements (1996) Appl. Math. Modell. J., 20, pp. 579-584Vander Weën, F., Application of the direct boundary integral equation method to Reissner's plate model. (1982) Int. J. Numer. Methods Eng., 67, pp. 1-10Wen, P.H., Aliabadi, M.H., Young, A., The boundary element method for dynamic plate bending problems (2000) Int. J. Solid Struct., 37, pp. 5177-5188Wen, P.H., Aliabadi, M.H., Boundary element frequency domain formulation for dynamic analysis of mindlin plates (2006) Int. J. Numer. Methods Eng., 67 (11), pp. 1617-1640Wen, P.H., Adetoro, M., Xu, Y., The fundamental solution of mindlin plates with damping in the laplace domain and its applications (2008) Eng. Anal. Bound. Elem., 32 (10), pp. 870-882Wen, P.H., Aliabadi, M.H., Young, A., Plane stress and plate bending coupling in BEM analysis of shallow shells (2000) Int. J. Numer. Methods Eng., 48, pp. 1107-1125Wen, P.H., Aliabadi, M.H., Application of dual reciprocity method to plates and shells (2000) Eng. Anal. Bound. Elem., 24, pp. 583-590Wrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method: Applications in Solid and Structures, 2. , Wiley, New YorkZhang, J.D., Atluri, S.N., A boundary/interior element method for quasi-static and transient response analyses of shallow shells (1986) Comput. Struct., 24 (2), pp. 213-224http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8991/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8991oai:repositorio.utb.edu.co:20.500.12585/89912023-04-24 09:18:14.369Repositorio Institucional UTBrepositorioutb@utb.edu.co |