A boundary element method formulation for modal analysis of doubly curved thick shallow shells

The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary e...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8991
Acceso en línea:
https://hdl.handle.net/20.500.12585/8991
Palabra clave:
Boundary element method
Doubly curved shallow shells
Dual reciprocity boundary element method
Free vibration
Modal analysis
Thick shells
Elasticity
Modal analysis
Plates (structural components)
Sailing vessels
Shear deformation
Shear flow
Shells (structures)
Thin walled structures
Time domain analysis
Vibration analysis
Boundary element formulations
Computational technique
Dual reciprocity boundary element method
Free vibration
Fundamental solutions
Shallow shells
Shear deformable plate
Thick shells
Boundary element method
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_83e9143bef6d715a661cd7e39dff04dc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8991
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A boundary element method formulation for modal analysis of doubly curved thick shallow shells
title A boundary element method formulation for modal analysis of doubly curved thick shallow shells
spellingShingle A boundary element method formulation for modal analysis of doubly curved thick shallow shells
Boundary element method
Doubly curved shallow shells
Dual reciprocity boundary element method
Free vibration
Modal analysis
Thick shells
Elasticity
Modal analysis
Plates (structural components)
Sailing vessels
Shear deformation
Shear flow
Shells (structures)
Thin walled structures
Time domain analysis
Vibration analysis
Boundary element formulations
Computational technique
Dual reciprocity boundary element method
Free vibration
Fundamental solutions
Shallow shells
Shear deformable plate
Thick shells
Boundary element method
title_short A boundary element method formulation for modal analysis of doubly curved thick shallow shells
title_full A boundary element method formulation for modal analysis of doubly curved thick shallow shells
title_fullStr A boundary element method formulation for modal analysis of doubly curved thick shallow shells
title_full_unstemmed A boundary element method formulation for modal analysis of doubly curved thick shallow shells
title_sort A boundary element method formulation for modal analysis of doubly curved thick shallow shells
dc.subject.keywords.none.fl_str_mv Boundary element method
Doubly curved shallow shells
Dual reciprocity boundary element method
Free vibration
Modal analysis
Thick shells
Elasticity
Modal analysis
Plates (structural components)
Sailing vessels
Shear deformation
Shear flow
Shells (structures)
Thin walled structures
Time domain analysis
Vibration analysis
Boundary element formulations
Computational technique
Dual reciprocity boundary element method
Free vibration
Fundamental solutions
Shallow shells
Shear deformable plate
Thick shells
Boundary element method
topic Boundary element method
Doubly curved shallow shells
Dual reciprocity boundary element method
Free vibration
Modal analysis
Thick shells
Elasticity
Modal analysis
Plates (structural components)
Sailing vessels
Shear deformation
Shear flow
Shells (structures)
Thin walled structures
Time domain analysis
Vibration analysis
Boundary element formulations
Computational technique
Dual reciprocity boundary element method
Free vibration
Fundamental solutions
Shallow shells
Shear deformable plate
Thick shells
Boundary element method
description The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary element method formulation is presented. The proposed formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear-deformable plates. We modeled shallow shells by coupling the boundary element formulation of a shear-deformable plate and the two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated by the dual reciprocity boundary element method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2015 Elsevier Inc.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:43Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:43Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-3600
dc.identifier.issn.none.fl_str_mv 0307904X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8991
dc.identifier.doi.none.fl_str_mv 10.1016/j.apm.2015.09.082
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 24537991200
56974175900
identifier_str_mv Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-3600
0307904X
10.1016/j.apm.2015.09.082
Universidad Tecnológica de Bolívar
Repositorio UTB
24537991200
56974175900
url https://hdl.handle.net/20.500.12585/8991
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc.
publisher.none.fl_str_mv Elsevier Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958163726&doi=10.1016%2fj.apm.2015.09.082&partnerID=40&md5=09ba19a7f4dbcbc770954c259f8ccafc
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8991/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021617151377408
spelling 2020-03-26T16:32:43Z2020-03-26T16:32:43Z2016Applied Mathematical Modelling; Vol. 40, Núm. 5-6; pp. 3591-36000307904Xhttps://hdl.handle.net/20.500.12585/899110.1016/j.apm.2015.09.082Universidad Tecnológica de BolívarRepositorio UTB2453799120056974175900The study of vibrations of shells is an important aspect in the design of thin-walled structures. In general, analytical solutions for the natural frequencies of shells are not possible, and computational techniques are required. In this paper, modal analysis of shallow shells using a new boundary element method formulation is presented. The proposed formulation is based on a direct time-domain integration using the elastostatic fundamental solutions for both in-plane elasticity and shear-deformable plates. We modeled shallow shells by coupling the boundary element formulation of a shear-deformable plate and the two-dimensional plane stress elasticity. Effects of shear deformation and rotatory inertia were included in the formulation. Domain integrals related to inertial terms were treated by the dual reciprocity boundary element method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed formulation. © 2015 Elsevier Inc.The authors are grateful to the Research Office of Universidad Tecnológica de Bolívar for supporting this research work.Recurso electrónicoapplication/pdfengElsevier Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84958163726&doi=10.1016%2fj.apm.2015.09.082&partnerID=40&md5=09ba19a7f4dbcbc770954c259f8ccafcA boundary element method formulation for modal analysis of doubly curved thick shallow shellsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Boundary element methodDoubly curved shallow shellsDual reciprocity boundary element methodFree vibrationModal analysisThick shellsElasticityModal analysisPlates (structural components)Sailing vesselsShear deformationShear flowShells (structures)Thin walled structuresTime domain analysisVibration analysisBoundary element formulationsComputational techniqueDual reciprocity boundary element methodFree vibrationFundamental solutionsShallow shellsShear deformable plateThick shellsBoundary element methodUseche Vivero, JairoHarnish C.Banerjee, P.K., Kobayashi, S., (1992) Advanced Dynamic Analysis by Boundary Element Methods, , Springer, LondonBayod, J.J., Yamazaki, T., Kamata, M., Prediction of vibration energy levels on structures using wave intensity analysis based on experimental data (2007) J. Syst. Des. Dyn., 1 (1), pp. 51-62Beskos, D.E., Maier, G., (2003) Dynamic Analysis of Structures and Structural Systems Boundary Element Analysis in Solid Mechanics, , Springer-Verlag ViennaBouthier, O.M., Bernhard, R.J., Simple models of the energetics of transversely vibrating plates (1995) J. Sound Vib., 182 (1), pp. 149-164Davies, T.W., Moslehy, F.A., Modal analysis of plates using the dual reciprocity boundary element method (1994) Eng. Anal. Bound. Elem., 14, pp. 357-362Dirgantara, T., Aliabadi, M.H., A new boundary element formulation for shear deformable shells analysis. (1999) Int. J. Numer. Methods Eng., 45, pp. 1257-1275Duddeck, F.M., (2010) Fourier BEM: Generalization of Boundary Element Methods by Fourier Transform, , Springer, New YorkEwins, D.J., (2000) Modal Testing, Theory, Practice, and Application (Mechanical Engineering Research Studies: Engineering Dynamics Series), , Research Studies PressAllemang, R., De Clerck, J., Niezrecki, C., Wicks, A., Topics in modal analysis (2013) Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 7. , (Conference Proceedings of the Society for Experimental Mechanics Series)Gao, X.W., Davies, T.G., (2002) Boundary Element Programming in Mechanics, , Cambridge University Press, CambridgeHall, W.S., (2013) The Boundary Element Method (Solid Mechanics and its Applications), , Springer, New YorkJong-Shyong, W., (2014) Analytical and Numerical Methods for Vibration Analyses, , WileyDoyle, J.F., (1991) Static and Dynamic Analysis of Structures: With an Emphasis on Mechanics and Computer Matrix Methods (Solid Mechanics and Its Applications), , SpringerKamiya, N., Sawaki, Y., Plate bending analysis by the dual reciprocity boundary elements (1988) Eng. Anal., 5 (1), pp. 36-40Langley, R.S., A wave intensity analysis of high frequency vibrations (1994) Philos. Trans. R. Soc. A, 346, pp. 489-499Lyon, R., DeJong, R., (1995) Theory and Application of Statistical Energy Analysis, , Butterworth-HeinemannLyon, R.H., Statistical analysis of power injection and response in structures and rooms. (1969) J. Acoust. Soc. Am., 45 (3)Maia, N., Theoretical and Experimental Modal Analysis (Mechanical Engineering Research Studies) (1997) Engineering Control Series, 9,, , Research Studies PressNardini, C.A., Brebbia, D., A new approach to free vibration analysis using boundary elements. in: Boundary Elements Methods in Engineering (1982), 26, pp. 312-326. , (Eds.), Springer-Verlag, BerlinPartridge, P.W., Brebbia, C.A., Wrobel, L.C., (1992) The Dual Reciprocity Boundary Element Method, , Computational Mechanics Publications, SouthamptonProvidakis, C.P., Beskos, D.E., Dynamic analysis of plates by boundary elements (1999) Appl. Mech. Rev., 52 (7), pp. 213-236Providakis, C.P., Beskos, D.E., Free and forced vibrations of shallow shells by boundary and interior elements (1991) Comput. Methods Appl. Mech. Eng., 92, pp. 55-74Manolis, G.D., Beskos, D.E., (1998) Boundary Element Methods in Elastodynamics, , Unwin-Hyman, LondonMukherjee, S., The boundary element method (2013) Int. J. Comput. Methods, 10 (6), pp. 1-90Rashed, Y., (2000) Boundary Element Formulation for Thick Plates., , WIT Press, Southampton, BostonReddy, J.N., (2004) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, , CRC Press, New YorkReissner, E., On transverse vibration of thin, shallow elastic shells (1955) Q. Appl. Math., 13 (2), pp. 169-176Katsikadelis, J.T., (2014) The Boundary Element Method for Plate Analysis., , Elsevier, San DiegoTelles, J.C.F., A self-adaptive coordinate transformation for efficient numerical evaluation of general boundary element integrals (1987) Int. J. Numer. Methods Eng., 24, pp. 959-973Sapountzakis, E.J., (2010) Recent Developments in Boundary Element Methods, , WIT Press, BostonUseche, J., Albuquerque, E.L., Dynamic analysis of shear deformable plates using the dual reciprocity method (2012) Eng. Anal. Boundary Elem. J., 36 (11), pp. 627-632Useche, J., Albuquerque, E.L., Sollero, P., Harmonic analysis of shear deformable orthotropic cracked plates using the boundary element method (2012) Eng. Anal. Boundary Elem. J., 36 (11), pp. 1528-1535Schweizerhof, J., Wang, K., Study on free vibration of moderately thick orthotropic laminated shallow shells by boundary-domain elements (1996) Appl. Math. Modell. J., 20, pp. 579-584Vander Weën, F., Application of the direct boundary integral equation method to Reissner's plate model. (1982) Int. J. Numer. Methods Eng., 67, pp. 1-10Wen, P.H., Aliabadi, M.H., Young, A., The boundary element method for dynamic plate bending problems (2000) Int. J. Solid Struct., 37, pp. 5177-5188Wen, P.H., Aliabadi, M.H., Boundary element frequency domain formulation for dynamic analysis of mindlin plates (2006) Int. J. Numer. Methods Eng., 67 (11), pp. 1617-1640Wen, P.H., Adetoro, M., Xu, Y., The fundamental solution of mindlin plates with damping in the laplace domain and its applications (2008) Eng. Anal. Bound. Elem., 32 (10), pp. 870-882Wen, P.H., Aliabadi, M.H., Young, A., Plane stress and plate bending coupling in BEM analysis of shallow shells (2000) Int. J. Numer. Methods Eng., 48, pp. 1107-1125Wen, P.H., Aliabadi, M.H., Application of dual reciprocity method to plates and shells (2000) Eng. Anal. Bound. Elem., 24, pp. 583-590Wrobel, L.C., Aliabadi, M.H., (2002) The Boundary Element Method: Applications in Solid and Structures, 2. , Wiley, New YorkZhang, J.D., Atluri, S.N., A boundary/interior element method for quasi-static and transient response analyses of shallow shells (1986) Comput. Struct., 24 (2), pp. 213-224http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8991/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8991oai:repositorio.utb.edu.co:20.500.12585/89912023-04-24 09:18:14.369Repositorio Institucional UTBrepositorioutb@utb.edu.co