Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System

The integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attack...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9137
Acceso en línea:
https://hdl.handle.net/20.500.12585/9137
Palabra clave:
Classification model
Data set
Dos Attacks
Feature selection
Machine learning
Support vector machine
Artificial intelligence
Classification (of information)
Denial-of-service attack
Intrusion detection
Learning systems
Network security
Statistical tests
Support vector machines
Classification models
Cyber-attacks
Data set
Features selection
Intrusion Detection Systems
Support vector machine models
Feature extraction
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_81e138df731ef2eb99bddebbd80cedd6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9137
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
title Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
spellingShingle Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
Classification model
Data set
Dos Attacks
Feature selection
Machine learning
Support vector machine
Artificial intelligence
Classification (of information)
Denial-of-service attack
Intrusion detection
Learning systems
Network security
Statistical tests
Support vector machines
Classification models
Cyber-attacks
Data set
Features selection
Intrusion Detection Systems
Support vector machine models
Feature extraction
title_short Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
title_full Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
title_fullStr Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
title_full_unstemmed Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
title_sort Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection System
dc.contributor.editor.none.fl_str_mv Orjuela-Canon A.D.
dc.subject.keywords.none.fl_str_mv Classification model
Data set
Dos Attacks
Feature selection
Machine learning
Support vector machine
Artificial intelligence
Classification (of information)
Denial-of-service attack
Intrusion detection
Learning systems
Network security
Statistical tests
Support vector machines
Classification models
Cyber-attacks
Data set
Features selection
Intrusion Detection Systems
Support vector machine models
Feature extraction
topic Classification model
Data set
Dos Attacks
Feature selection
Machine learning
Support vector machine
Artificial intelligence
Classification (of information)
Denial-of-service attack
Intrusion detection
Learning systems
Network security
Statistical tests
Support vector machines
Classification models
Cyber-attacks
Data set
Features selection
Intrusion Detection Systems
Support vector machine models
Feature extraction
description The integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attacks like Denial of Service attacks. In this article, we will use all the attributes of the data-set NSL-KDD to train and test a Support Vector Machine model. This model will then be applied to a method of feature selection to obtain the most relevant attributes within the aforementioned data-set and train the model again. The main goal is comparing the results obtained in both instances of training and validate which was more efficient. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:02Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:02Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings
dc.identifier.isbn.none.fl_str_mv 9781728116143
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9137
dc.identifier.doi.none.fl_str_mv 10.1109/ColCACI.2019.8781803
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57210565161
26325154200
identifier_str_mv 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings
9781728116143
10.1109/ColCACI.2019.8781803
Universidad Tecnológica de Bolívar
Repositorio UTB
57210565161
26325154200
url https://hdl.handle.net/20.500.12585/9137
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 5 June 2019 through 7 June 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070855791&doi=10.1109%2fColCACI.2019.8781803&partnerID=40&md5=e5847944721efd67a906bd5aaabba5f9
Scopus2-s2.0-85070855791
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9137/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734218596352
spelling Orjuela-Canon A.D.Álvarez Almeida L.A.Carlos Martinez Santos J.2020-03-26T16:33:02Z2020-03-26T16:33:02Z20192019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019 - Proceedings9781728116143https://hdl.handle.net/20.500.12585/913710.1109/ColCACI.2019.8781803Universidad Tecnológica de BolívarRepositorio UTB5721056516126325154200The integrity of information and services is one of the more evident concerns in the world of global information security, due to the fact that it has economic repercussions on the digital industry. For this reason, big companies spend a lot of money on systems that protect them against cyber-attacks like Denial of Service attacks. In this article, we will use all the attributes of the data-set NSL-KDD to train and test a Support Vector Machine model. This model will then be applied to a method of feature selection to obtain the most relevant attributes within the aforementioned data-set and train the model again. The main goal is comparing the results obtained in both instances of training and validate which was more efficient. © 2019 IEEE.EEE Colombia Section;EEE Colombian Caribbean Section;IEEE Computational Intelligence Colombian Chapter;IEEE Computational Intelligence SocietyRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070855791&doi=10.1109%2fColCACI.2019.8781803&partnerID=40&md5=e5847944721efd67a906bd5aaabba5f9Scopus2-s2.0-850708557912019 IEEE Colombian Conference on Applications in Computational Intelligence, ColCACI 2019Evaluating Features Selection on NSL-KDD Data-Set to Train a Support Vector Machine-Based Intrusion Detection Systeminfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fClassification modelData setDos AttacksFeature selectionMachine learningSupport vector machineArtificial intelligenceClassification (of information)Denial-of-service attackIntrusion detectionLearning systemsNetwork securityStatistical testsSupport vector machinesClassification modelsCyber-attacksData setFeatures selectionIntrusion Detection SystemsSupport vector machine modelsFeature extraction5 June 2019 through 7 June 2019(1999) Canadian Institute for Cybersecurity, , nsl-kdd DatasetDhanabal, L., Shantharajah, S.P., A study on nsl-kdd dataset for intrusion detection system based on classification algorithms (2015) International Journal of Advanced Research in Computer and Communication Engineering, 4 (6), pp. 446-452Fakieh, K., Survey on ddos attacks prevention and detection in cloud (2016) International Journal of Applied Information Systems, 12Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., The kdd process for extracting useful knowledge from volumes of data (1996) Communications of the ACM, 39 (11), pp. 27-34Gyanchandani, M., Rana, J.L., Yadav, R.N., Taxonomy of anomaly based intrusion detection system: A review (2012) International Journal of Scientific and Research Publications, 2 (12), pp. 1-13Kaur, P., Kumar, M., Bhandari, A., A review of detection approaches for distributed denial of service attacks (2017) Systems Science & Control Engineering, 5 (1), pp. 301-320. , JanuaryMarkou, M., Singh, S., Novelty detection: A reviewpart 2: Neural network based approaches (2003) Signal Processing, 83 (12), pp. 2499-2521Meti, N., Narayan, D.G., Baligar, V.P., Detection of distributed denial of service attacks using machine learning algorithms in software defined networks. In (2017) 2017 International Conference on Advances in Computing Communications and Informatics (ICACCI, pp. 1366-1371Parsaei, M.R., Rostami, S.M., Javidan, R., A hybrid data mining approach for intrusion detection on imbalanced nsl-kdd dataset (2016) International Journal of Advanced Computer Science and Applications, 7 (6), pp. 20-25Patcha, A., Park, J.-M., An overview of anomaly detection techniques: Existing solutions and latest technological trends (2007) Computer Networks, 51 (12), pp. 3448-3470Boddula, N., Kalime, S., A study on detection of distributed denial of service attacks using machine learning techniques (2018) International Journal of Research, p. 10Zargar, S.T., Joshi, J., Tipper, D., A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks (2013) IEEE Communications Surveys & Tutorials, 15 (4), pp. 2046-2069http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9137/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9137oai:repositorio.utb.edu.co:20.500.12585/91372021-02-02 14:55:27.323Repositorio Institucional UTBrepositorioutb@utb.edu.co