Impact of emotional states on the effective range of electric vehicles

Over the last decade, a large interest in reducing transportation dependence on fossil fuels as well as the cost reduction in battery technologies, have driven the electric cars market uptake. However, information is scarce about factors that affect the driving range. Besides the battery’s capacity,...

Full description

Autores:
Dominguez, Juan
Campillo, Javier
Campo-Landines, Kiara
Contreras-Ortiz, Sonia H.
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12211
Acceso en línea:
https://hdl.handle.net/20.500.12585/12211
Palabra clave:
Automobile;
Alternative Fuel Vehicles;
Electric Car
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_8081634a1d26dd7fba5e1b0dd38d3554
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12211
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Impact of emotional states on the effective range of electric vehicles
title Impact of emotional states on the effective range of electric vehicles
spellingShingle Impact of emotional states on the effective range of electric vehicles
Automobile;
Alternative Fuel Vehicles;
Electric Car
LEMB
title_short Impact of emotional states on the effective range of electric vehicles
title_full Impact of emotional states on the effective range of electric vehicles
title_fullStr Impact of emotional states on the effective range of electric vehicles
title_full_unstemmed Impact of emotional states on the effective range of electric vehicles
title_sort Impact of emotional states on the effective range of electric vehicles
dc.creator.fl_str_mv Dominguez, Juan
Campillo, Javier
Campo-Landines, Kiara
Contreras-Ortiz, Sonia H.
dc.contributor.author.none.fl_str_mv Dominguez, Juan
Campillo, Javier
Campo-Landines, Kiara
Contreras-Ortiz, Sonia H.
dc.subject.keywords.spa.fl_str_mv Automobile;
Alternative Fuel Vehicles;
Electric Car
topic Automobile;
Alternative Fuel Vehicles;
Electric Car
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Over the last decade, a large interest in reducing transportation dependence on fossil fuels as well as the cost reduction in battery technologies, have driven the electric cars market uptake. However, information is scarce about factors that affect the driving range. Besides the battery’s capacity, other factors may affect the overall vehicle’s range, for instance: driving behavior, fluctuations in temperature, number of battery cycles, etc. Accordingly, this paper proposes an approach to evaluate the impact of emotions and driving behavior on the range of electric cars using physiological signals and vehicle performance features. This work was developed in three stages. During the first stage, the heart rate and galvanic skin response of 20 volunteers were recorded from biosensors. The vehicle’s data was obtained from a driving simulator. Afterward, the driving profile was used as an input source to simulate an object-oriented electric vehicle model to estimate the driving range. Finally, during the third stage, feature selection techniques and subject-dependent classifiers were evaluated using metrics such as the accuracy and the area under the curve. Support-vector machines with radial kernel and tree-bagged models provided the best global performance with the bio-signals and driving performance subsets to discriminate between calm and aggressive driving. Results showed that driving behavior could be evaluated from physiological and vehicle features. Furthermore, the subjects’ statements showed that users’ beliefs, thoughts, and prior social contexts influence the way they perceive driving behavior. Reductions in the range of up to 68% when driving aggressively compared to a calm manner were found. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:21:23Z
dc.date.available.none.fl_str_mv 2023-07-19T21:21:23Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Dominguez, J., Campillo, J., Campo-Landines, K., & Contreras-Ortiz, S. H. (2023). Impact of emotional states on the effective range of electric vehicles. Journal of Ambient Intelligence and Humanized Computing, 14(7), 9049-9058.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12211
dc.identifier.doi.none.fl_str_mv 10.1007/s12652-022-04410-x
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Dominguez, J., Campillo, J., Campo-Landines, K., & Contreras-Ortiz, S. H. (2023). Impact of emotional states on the effective range of electric vehicles. Journal of Ambient Intelligence and Humanized Computing, 14(7), 9049-9058.
10.1007/s12652-022-04410-x
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12211
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Ambient Intelligence and Humanized Computing
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/1/29304-62161-1-PB.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/3/29304-62161-1-PB.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/4/29304-62161-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 626d64824154006e6539948aa3b9078e
e20ad307a1c5f3f25af9304a7a7c86b6
149517d8229d14a9fde35d14b48cf22e
4cde987df4f825346e180752a8fec272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021576398471168
spelling Dominguez, Juanbd8466a9-a81f-42a1-a377-0400f508ab41Campillo, Javierf3ff0112-bc56-4d8f-9a9e-55b707704a07Campo-Landines, Kiarae038ce57-4014-4c34-baf5-a9ab628cf2fdContreras-Ortiz, Sonia H.1d56d7f5-97c9-4429-b47d-48ebe97de2a82023-07-19T21:21:23Z2023-07-19T21:21:23Z20232023Dominguez, J., Campillo, J., Campo-Landines, K., & Contreras-Ortiz, S. H. (2023). Impact of emotional states on the effective range of electric vehicles. Journal of Ambient Intelligence and Humanized Computing, 14(7), 9049-9058.https://hdl.handle.net/20.500.12585/1221110.1007/s12652-022-04410-xUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOver the last decade, a large interest in reducing transportation dependence on fossil fuels as well as the cost reduction in battery technologies, have driven the electric cars market uptake. However, information is scarce about factors that affect the driving range. Besides the battery’s capacity, other factors may affect the overall vehicle’s range, for instance: driving behavior, fluctuations in temperature, number of battery cycles, etc. Accordingly, this paper proposes an approach to evaluate the impact of emotions and driving behavior on the range of electric cars using physiological signals and vehicle performance features. This work was developed in three stages. During the first stage, the heart rate and galvanic skin response of 20 volunteers were recorded from biosensors. The vehicle’s data was obtained from a driving simulator. Afterward, the driving profile was used as an input source to simulate an object-oriented electric vehicle model to estimate the driving range. Finally, during the third stage, feature selection techniques and subject-dependent classifiers were evaluated using metrics such as the accuracy and the area under the curve. Support-vector machines with radial kernel and tree-bagged models provided the best global performance with the bio-signals and driving performance subsets to discriminate between calm and aggressive driving. Results showed that driving behavior could be evaluated from physiological and vehicle features. Furthermore, the subjects’ statements showed that users’ beliefs, thoughts, and prior social contexts influence the way they perceive driving behavior. Reductions in the range of up to 68% when driving aggressively compared to a calm manner were found. © 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.application/pdfengJournal of Ambient Intelligence and Humanized ComputingImpact of emotional states on the effective range of electric vehiclesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Automobile;Alternative Fuel Vehicles;Electric CarLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasAlvarez, R., López, A., De La Torre, N. Evaluating the effect of a driver's behaviour on the range of a battery electric vehicle (2015) Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229 (10), pp. 1379-1391. Cited 22 times. https://journals.sagepub.com/home/PID doi: 10.1177/0954407014561483Braun, A., Rid, W. Energy consumption of an electric and an internal combustion passenger car. A comparative case study from real world data on the Erfurt circuit in Germany (2017) Transportation Research Procedia, 27, pp. 468-475. Cited 29 times. www.journals.elsevier.com/transportation-research-procedia doi: 10.1016/j.trpro.2017.12.044Bingham, C., Walsh, C., Carroll, S. Impact of driving characteristics on electric vehicle energy consumption and range (2012) IET Intelligent Transport Systems, 6 (1), pp. 29-35. Cited 153 times. doi: 10.1049/iet-its.2010.0137Carter, R., Cruden, A., Hall, P.J. Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle (2012) IEEE Transactions on Vehicular Technology, 61 (4), art. no. 6156474, pp. 1526-1533. Cited 250 times. doi: 10.1109/TVT.2012.2188551Chen, L.-L., Zhao, Y., Ye, P.-F., Zhang, J., Zou, J.-Z. Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers (2017) Expert Systems with Applications, 85, pp. 279-291. Cited 167 times. doi: 10.1016/j.eswa.2017.01.040Cooper, C.L., Dewe, P. Stress: A Brief History (2008) Stress: A Brief History, pp. 1-144. Cited 30 times. http://onlinelibrary.wiley.com/book/10.1002/9780470774755 ISBN: 978-047077475-5; 1405107448; 978-140510744-0 doi: 10.1002/9780470774755Dominguez-Jimenez, J.A., Campillo, J. Object-oriented mathematical modeling for estimating electric vehicle’s range using modelica (2018) Communications in Computer and Information Science, 885, pp. 444-458. Cited 4 times. http://www.springer.com/series/7899 ISBN: 978-331998997-6 doi: 10.1007/978-3-319-98998-3_34Dominguez-Jimenez, J.A., Campo-Landines, K.C., Contreras-Ortiz, S.H. A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 357-367. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_31Domínguez-Jiménez, J.A., Campo-Landines, K.C., Martínez-Santos, J.C., Delahoz, E.J., Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals (2020) Biomedical Signal Processing and Control, 55, art. no. 101646. Cited 102 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2019.101646Felipe, J., Amarillo, J.C., Naranjo, J.E., Serradilla, F., Diaz, A. Energy Consumption Estimation in Electric Vehicles Considering Driving Style (2015) IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2015-October, art. no. 7313117, pp. 101-106. Cited 34 times. ISBN: 978-146736595-6; 978-146736595-6; 978-146736595-6; 978-146736595-6 doi: 10.1109/ITSC.2015.25Franke, T., Krems, J.F. Understanding charging behaviour of electric vehicle users (2013) Transportation Research Part F: Traffic Psychology and Behaviour, 21, pp. 75-89. Cited 201 times. http://www.elsevier.com/locate/issn/13698478 doi: 10.1016/j.trf.2013.09.002Grunditz, E.A., Thiringer, T. Electric Vehicle Acceleration Performance and Motor Drive Cycle Energy Efficiency Trade-Off (2018) Proceedings - 2018 23rd International Conference on Electrical Machines, ICEM 2018, art. no. 8507201, pp. 717-723. Cited 12 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8478646 ISBN: 978-153862477-7 doi: 10.1109/ICELMACH.2018.8507201Guzzella, L., Sciarretta, A. Vehicle propulsion systems: Introduction to modeling and optimization (2007) Vehicle Propulsion Systems (Second Edition): Introduction to Modeling and Optimization, pp. 1-338. Cited 490 times. http://www.springerlink.com/openurl.asp?genre=book&isbn=978-3-540-74691-1 ISBN: 978-354074691-1 doi: 10.1007/978-3-540-74692-8Habibifar, N., Salmanzadeh, H. Relationship between driving styles and biological behavior of drivers in negative emotional state (2022) Transportation Research Part F: Traffic Psychology and Behaviour, 85, pp. 245-258. Cited 8 times. http://www.elsevier.com/locate/issn/13698478 doi: 10.1016/j.trf.2022.01.010Jahangir, H., Golkar, M.A., Ahmadian, A., Elkamel, A. Why electric vehicles? (2020) Electric Vehicles in Energy Systems: Modelling, Integration, Analysis, and Optimization, pp. 1-20. Cited 5 times. http://dx.doi.org/10.1007/978-3-030-34448-1 ISBN: 978-303034448-1; 978-303034447-4 doi: 10.1007/978-3-030-34448-1_1Lanatà, A., Valenza, G., Greco, A., Gentili, C., Bartolozzi, R., Bucchi, F., Frendo, F., (...), Scilingo, E.P. How the Autonomic nervous system and driving style change with incremental stressing conditions during simulated driving (Open Access) (2015) IEEE Transactions on Intelligent Transportation Systems, 16 (3), art. no. 6964800, pp. 1505-1517. Cited 98 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6979 doi: 10.1109/TITS.2014.2365681Nykvist, B., Nilsson, M. Rapidly falling costs of battery packs for electric vehicles (2015) Nature Climate Change, 5 (4), pp. 329-332. Cited 1247 times. http://www.nature.com/nclimate/index.html doi: 10.1038/nclimate2564Rodgers, M.M., Pai, V.M., Conroy, R.S. Recent advances in wearable sensors for health monitoring (Open Access) (2015) IEEE Sensors Journal, 15 (6), art. no. 6899605, pp. 3119-3126. Cited 226 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7361 doi: 10.1109/JSEN.2014.2357257Sagberg, F., Selpi, Bianchi Piccinini, G.F., Engström, J. A review of research on driving styles and road safety (2015) Human Factors, 57 (7), pp. 1248-1275. Cited 230 times. http://hfs.sagepub.com/ doi: 10.1177/0018720815591313Vassileva, I., Campillo, J. Adoption barriers for electric vehicles: Experiences from early adopters in Sweden (2017) Energy, 120, pp. 632-641. Cited 145 times. https://www.journals.elsevier.com/energy doi: 10.1016/j.energy.2016.11.119Weldon, P., Morrissey, P., O'Mahony, M. Long-term cost of ownership comparative analysis between electric vehicles and internal combustion engine vehicles (Open Access) (2018) Sustainable Cities and Society, 39, pp. 578-591. Cited 81 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724360/description#description doi: 10.1016/j.scs.2018.02.024Xiao, H., Li, W., Zeng, G., Wu, Y., Xue, J., Zhang, J., Li, C., (...), Guo, G. On-Road Driver Emotion Recognition Using Facial Expression (Open Access) (2022) Applied Sciences (Switzerland), 12 (2), art. no. 807. Cited 11 times. https://www.mdpi.com/2076-3417/12/2/807/pdf doi: 10.3390/app12020807Yang, L., Ma, R., Zhang, H.M., Guan, W., Jiang, S. Driving behavior recognition using EEG data from a simulated car-following experiment (2018) Accident Analysis and Prevention, 116, pp. 30-40. Cited 100 times. http://www.sciencedirect.com/science/journal/00014575 doi: 10.1016/j.aap.2017.11.010Younes, Z., Boudet, L., Suard, F., Gerard, M., Rioux, R. Analysis of the main factors influencing the energy consumption of electric vehicles (Open Access) (2013) Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, art. no. 6556260, pp. 247-253. Cited 38 times. ISBN: 978-146734975-8 doi: 10.1109/IEMDC.2013.6556260http://purl.org/coar/resource_type/c_6501ORIGINAL29304-62161-1-PB.pdf29304-62161-1-PB.pdfapplication/pdf166944https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/1/29304-62161-1-PB.pdf626d64824154006e6539948aa3b9078eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT29304-62161-1-PB.pdf.txt29304-62161-1-PB.pdf.txtExtracted texttext/plain2436https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/3/29304-62161-1-PB.pdf.txt149517d8229d14a9fde35d14b48cf22eMD53THUMBNAIL29304-62161-1-PB.pdf.jpg29304-62161-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5993https://repositorio.utb.edu.co/bitstream/20.500.12585/12211/4/29304-62161-1-PB.pdf.jpg4cde987df4f825346e180752a8fec272MD5420.500.12585/12211oai:repositorio.utb.edu.co:20.500.12585/122112023-07-20 00:18:01.764Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=