Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks

Abstract The development of new molecules is a multi-stage process and clinical trials to verify their efficacy cost billions of dollars each year. Machine learning is a tool that is rapidly advancing in image, voice, and text recognition, and working in silico would increase the ability to predict...

Full description

Autores:
Martínez-Conde, Jorge Mario
Patiño-Vanegas, Alberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
spa
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12367
Acceso en línea:
https://hdl.handle.net/20.500.12585/12367
Palabra clave:
Chemoinformatics;
Drug Discovery;
Topographic Mapping
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_801e94b0cc636f4e96a06fced6f11c7e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12367
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
dc.title.alternative.spa.fl_str_mv [Aprendizaje del uso terapéutico de fármacos a partir de la información espacial tridimensional de su estructura molecular con redes neuronales convolucionales
title Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
spellingShingle Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
Chemoinformatics;
Drug Discovery;
Topographic Mapping
LEMB
title_short Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
title_full Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
title_fullStr Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
title_full_unstemmed Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
title_sort Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks
dc.creator.fl_str_mv Martínez-Conde, Jorge Mario
Patiño-Vanegas, Alberto
dc.contributor.author.none.fl_str_mv Martínez-Conde, Jorge Mario
Patiño-Vanegas, Alberto
dc.subject.keywords.spa.fl_str_mv Chemoinformatics;
Drug Discovery;
Topographic Mapping
topic Chemoinformatics;
Drug Discovery;
Topographic Mapping
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Abstract The development of new molecules is a multi-stage process and clinical trials to verify their efficacy cost billions of dollars each year. Machine learning is a tool that is rapidly advancing in image, voice, and text recognition, and working in silico would increase the ability to predict and prioritize a drug's function. In this research we asked whether the function of therapeutic drugs can be predicted from the stereochemical configuration of the molecule. We use convolutional neural networks to predict the therapeutic use of drugs, trained with both two-dimensional and three-dimensional information of their chemical structure. The model trained with only six views of the 3D information of the molecular structure improved the accuracy by 10 over the model trained with the 2D information. © 2021, Universidad Nacional de Colombia. All rights reserved.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:46:13Z
dc.date.available.none.fl_str_mv 2023-07-21T20:46:13Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Martínez-Conde, J. M., & Patiño-Vanegas, A. (2021). Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks. Dyna, 88(219), 247-255.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12367
dc.identifier.doi.none.fl_str_mv 10.15446/dyna.v88n219.92778
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Martínez-Conde, J. M., & Patiño-Vanegas, A. (2021). Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks. Dyna, 88(219), 247-255.
10.15446/dyna.v88n219.92778
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12367
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv DYNA (Colombia)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/1/2346-2183-dyna-88-219-247.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/4/2346-2183-dyna-88-219-247.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/5/2346-2183-dyna-88-219-247.pdf.jpg
bitstream.checksum.fl_str_mv 5f5bfafc1f687d468eef04eddc7d01f3
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
ce1f54b09432b382b6d30faf8959ee4e
90065a8d65d54bfb6c4657462bf27444
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021610521231360
spelling Martínez-Conde, Jorge Mariod44c0352-890f-4297-9c84-981612db7ebcPatiño-Vanegas, Albertoed3ee444-6afd-4230-9ab9-5b0212fa21e62023-07-21T20:46:13Z2023-07-21T20:46:13Z20212023Martínez-Conde, J. M., & Patiño-Vanegas, A. (2021). Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks. Dyna, 88(219), 247-255.https://hdl.handle.net/20.500.12585/1236710.15446/dyna.v88n219.92778Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAbstract The development of new molecules is a multi-stage process and clinical trials to verify their efficacy cost billions of dollars each year. Machine learning is a tool that is rapidly advancing in image, voice, and text recognition, and working in silico would increase the ability to predict and prioritize a drug's function. In this research we asked whether the function of therapeutic drugs can be predicted from the stereochemical configuration of the molecule. We use convolutional neural networks to predict the therapeutic use of drugs, trained with both two-dimensional and three-dimensional information of their chemical structure. The model trained with only six views of the 3D information of the molecular structure improved the accuracy by 10 over the model trained with the 2D information. © 2021, Universidad Nacional de Colombia. All rights reserved.9 páginasapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2DYNA (Colombia)Learning the therapeutic use of drugs from the three-dimensional spatial information of their molecular structure with convolutional neural networks[Aprendizaje del uso terapéutico de fármacos a partir de la información espacial tridimensional de su estructura molecular con redes neuronales convolucionalesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Chemoinformatics;Drug Discovery;Topographic MappingLEMBCartagena de IndiasLipkus, A.H., Yuan, Q., Lucas, K.A., Funk, S.A., Bartelt III, W.F., Schenck, R.J., Trippe, A.J. Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry (2008) Journal of Organic Chemistry, 73 (12), pp. 4443-4451. Cited 256 times. doi: 10.1021/jo8001276Ruddigkeit, L., Van Deursen, R., Blum, L.C., Reymond, J.-L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17 (2012) Journal of Chemical Information and Modeling, 52 (11), pp. 2864-2875. Cited 707 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/ci300415dLipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings (2001) Advanced Drug Delivery Reviews, 46 (1-3), pp. 3-26. Cited 8868 times. www.elsevier.com/locate/drugdeliv doi: 10.1016/S0169-409X(00)00129-0Hann, M.M. Molecular obesity, potency and other addictions in drug discovery (2011) MedChemComm, 2 (5), pp. 349-355. Cited 283 times. doi: 10.1039/c1md00017aBolten, B.M., DeGregorio, T. Trends in development cycles. Market indicators (2002) Nature Reviews Drug Discovery, 1 (5), pp. 335-336. Cited 58 times. doi: 10.1038/nrd805Dearden, J.C. In silico prediction of drug toxicity (2003) Journal of Computer-Aided Molecular Design, 17 (2-4), pp. 119-127. Cited 216 times. https://www.springer.com/journal/10822 doi: 10.1023/A:1025361621494Torres, J Python deep learning: introducción práctica con Keras y TensorFlow 2 (2020) . Cited 7 times. Marcombo; [online] https://books.google.com.co/books?id=5vpmzQEACAAJFerdousi, R., Safdari, R., Omidi, Y. Computational prediction of drug-drug interactions based on drugs functional similarities (2017) Journal of Biomedical Informatics, 70, pp. 54-64. Cited 96 times. http://www.elsevier.com/inca/publications/store/6/2/2/8/5/7/index.htt doi: 10.1016/j.jbi.2017.04.021Ellison, N. Goodman & Gilman’s The Pharmacological Basis of therapeutics (2002) Anesthesia & Analgesia, 94 (5), p. 1377. Cited 6 times. 10th Ed., [online]. P https://journals.lww.com/anesthesia-analgesia/Fulltext/2002/05000/Goodman___Gilman_s_The_Pharmacological_Basis_of.85.aspxAliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data (Open Access) (2016) Molecular Pharmaceutics, 13 (7), pp. 2524-2530. Cited 319 times. http://pubs.acs.org/journal/mpohbp doi: 10.1021/acs.molpharmaceut.6b00248Rogers, D., Hahn, M. Extended-connectivity fingerprints (2010) Journal of Chemical Information and Modeling, 50 (5), pp. 742-754. Cited 3388 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/ci100050tMeyer, J.G., Liu, S., Miller, I.J., Coon, J.J., Gitter, A. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests (2019) Journal of Chemical Information and Modeling. Cited 44 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.9b00236Lengauer, T., Rarey, M. Computational methods for biomolecular docking (1996) Current Opinion in Structural Biology, 6 (3), pp. 402-406. Cited 551 times. http://www.elsevier.com/locate/sbi doi: 10.1016/S0959-440X(96)80061-3Wei, B.Q., Weaver, L.H., Ferrari, A.M., Matthews, B.W., Shoichet, B.K. Testing a flexible-receptor docking algorithm in a model binding site (2004) Journal of Molecular Biology, 337 (5), pp. 1161-1182. Cited 185 times. https://www.journals.elsevier.com/journal-of-molecular-biology doi: 10.1016/j.jmb.2004.02.015Shoichet, B.K., Kuntz, I.D., Bodian, D.L. Molecular docking using shape descriptors (Open Access) (1992) Journal of Computational Chemistry, 13 (3), pp. 380-397. Cited 374 times. doi: 10.1002/jcc.540130311Jiménez, J., Škalič, M., Martínez-Rosell, G., De Fabritiis, G. KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks (2018) Journal of Chemical Information and Modeling, 58 (2), pp. 287-296. Cited 428 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.7b00650Lowe, H.J., Barnett, G.O. Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches (1994) JAMA, 271 (14), pp. 1103-1108. Cited 346 times. http://jama.jamanetwork.com/journal.aspx doi: 10.1001/jama.271.14.1103Meyer, J.G., Liu, S., Miller, I.J., Coon, J.J., Gitter, A. Learning Drug Functions from Chemical Structures with Convolutional Neural Networks and Random Forests (Open Access) (2019) Journal of Chemical Information and Modeling. Cited 44 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.9b00236Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., Koes, D.R. Protein-Ligand Scoring with Convolutional Neural Networks (2017) Journal of Chemical Information and Modeling, 57 (4), pp. 942-957. Cited 429 times. http://pubs.acs.org/journal/jcisd8 doi: 10.1021/acs.jcim.6b00740Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., (...), Bolton, E.E. PubChem in 2021: New data content and improved web interfaces (Open Access) (2021) Nucleic Acids Research, 49 (D1), pp. D1388-D1395. Cited 1480 times. https://academic.oup.com/nar/issue doi: 10.1093/nar/gkaa971Anderson, E., Veith, G.D., Weininger, D. (1987) SMILES, a Line Notation and Computerized Interpreter for Chemical Structures. Environmental research brief. Cited 78 times. and Environmental Research Laboratory (Duluth, Minn)., U.S. Environmental Protection Agency, Environmental Research Laboratory, Ed., [online]. 4P https://books.google.com.co/books?id=KSofvgAACAAJhttp://purl.org/coar/resource_type/c_6501ORIGINAL2346-2183-dyna-88-219-247.pdf2346-2183-dyna-88-219-247.pdfapplication/pdf2221708https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/1/2346-2183-dyna-88-219-247.pdf5f5bfafc1f687d468eef04eddc7d01f3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT2346-2183-dyna-88-219-247.pdf.txt2346-2183-dyna-88-219-247.pdf.txtExtracted texttext/plain39581https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/4/2346-2183-dyna-88-219-247.pdf.txtce1f54b09432b382b6d30faf8959ee4eMD54THUMBNAIL2346-2183-dyna-88-219-247.pdf.jpg2346-2183-dyna-88-219-247.pdf.jpgGenerated Thumbnailimage/jpeg8272https://repositorio.utb.edu.co/bitstream/20.500.12585/12367/5/2346-2183-dyna-88-219-247.pdf.jpg90065a8d65d54bfb6c4657462bf27444MD5520.500.12585/12367oai:repositorio.utb.edu.co:20.500.12585/123672023-07-22 00:17:35.732Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=