Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology

This paper proposes a vortex search algorithm (VSA) optimization for optimal dimensioning of distributed generators (DGs), in radial alternating current (AC) distribution networks. The VSA corresponds to a metaheuristic optimization technique that works in the continuous domain, to solve nonlinear,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9182
Acceso en línea:
https://hdl.handle.net/20.500.12585/9182
Palabra clave:
Distributed generation
Electrical distribution networks
Metaheuristic optimization
Optimal power flow
Vortex search algorithm
AC generators
Distributed power generation
Electric impedance measurement
Electric load flow
Learning algorithms
MATLAB
Vortex flow
Distributed generator (DGs)
Distributed generators
Electrical distribution networks
Large-scale optimization
Meta-heuristic optimization techniques
Meta-heuristic optimizations
Optimal power flows
Search Algorithms
Optimization
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7feea9697bc1b6a0ca9f837d5ef81a18
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9182
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
title Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
spellingShingle Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
Distributed generation
Electrical distribution networks
Metaheuristic optimization
Optimal power flow
Vortex search algorithm
AC generators
Distributed power generation
Electric impedance measurement
Electric load flow
Learning algorithms
MATLAB
Vortex flow
Distributed generator (DGs)
Distributed generators
Electrical distribution networks
Large-scale optimization
Meta-heuristic optimization techniques
Meta-heuristic optimizations
Optimal power flows
Search Algorithms
Optimization
title_short Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
title_full Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
title_fullStr Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
title_full_unstemmed Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
title_sort Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Duarte-Gonzalez M.
Jaramillo-Isaza S.
Orjuela-Canon A.D.
Diaz-Gutierrez Y.
dc.subject.keywords.none.fl_str_mv Distributed generation
Electrical distribution networks
Metaheuristic optimization
Optimal power flow
Vortex search algorithm
AC generators
Distributed power generation
Electric impedance measurement
Electric load flow
Learning algorithms
MATLAB
Vortex flow
Distributed generator (DGs)
Distributed generators
Electrical distribution networks
Large-scale optimization
Meta-heuristic optimization techniques
Meta-heuristic optimizations
Optimal power flows
Search Algorithms
Optimization
topic Distributed generation
Electrical distribution networks
Metaheuristic optimization
Optimal power flow
Vortex search algorithm
AC generators
Distributed power generation
Electric impedance measurement
Electric load flow
Learning algorithms
MATLAB
Vortex flow
Distributed generator (DGs)
Distributed generators
Electrical distribution networks
Large-scale optimization
Meta-heuristic optimization techniques
Meta-heuristic optimizations
Optimal power flows
Search Algorithms
Optimization
description This paper proposes a vortex search algorithm (VSA) optimization for optimal dimensioning of distributed generators (DGs), in radial alternating current (AC) distribution networks. The VSA corresponds to a metaheuristic optimization technique that works in the continuous domain, to solve nonlinear, non-convex, large scale optimization problems. Here, this technique is used to determine the optimal power generation capacity of the DGs from the top-down analysis. From the bottom-up, a conventional backward/forward power flow is employed for determining the voltage behavior and calculate the power losses of the network, for each power output combination in the DGs. Numerical results demonstrate that the proposed approach is efficient and robust for reducing power losses on AC grids by optimally sizing the capacity the DGs, compared with other approaches found on literature reports. All the simulations were conducted using the MATLAB software. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:09Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:09Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 235-249
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9182
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_21
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
55791991200
57210212368
50361825100
55609096600
identifier_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 235-249
9783030310189
18650929
10.1007/978-3-030-31019-6_21
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
55791991200
57210212368
50361825100
55609096600
url https://hdl.handle.net/20.500.12585/9182
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700587&doi=10.1007%2f978-3-030-31019-6_21&partnerID=40&md5=ccad52d423b76820f673105c5dc8055d
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th Workshop on Engineering Applications, WEA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9182/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021697282506752
spelling Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.Montoya O.D.Grisales-Noreña L.F.Amin W.T.Rojas L.A.Campillo Jiménez, Javier Eduardo2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Communications in Computer and Information Science; Vol. 1052, pp. 235-249978303031018918650929https://hdl.handle.net/20.500.12585/918210.1007/978-3-030-31019-6_21Universidad Tecnológica de BolívarRepositorio UTB5691956410055791991200572102123685036182510055609096600This paper proposes a vortex search algorithm (VSA) optimization for optimal dimensioning of distributed generators (DGs), in radial alternating current (AC) distribution networks. The VSA corresponds to a metaheuristic optimization technique that works in the continuous domain, to solve nonlinear, non-convex, large scale optimization problems. Here, this technique is used to determine the optimal power generation capacity of the DGs from the top-down analysis. From the bottom-up, a conventional backward/forward power flow is employed for determining the voltage behavior and calculate the power losses of the network, for each power output combination in the DGs. Numerical results demonstrate that the proposed approach is efficient and robust for reducing power losses on AC grids by optimally sizing the capacity the DGs, compared with other approaches found on literature reports. All the simulations were conducted using the MATLAB software. © 2019, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075700587&doi=10.1007%2f978-3-030-31019-6_21&partnerID=40&md5=ccad52d423b76820f673105c5dc8055d6th Workshop on Engineering Applications, WEA 2019Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topologyinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDistributed generationElectrical distribution networksMetaheuristic optimizationOptimal power flowVortex search algorithmAC generatorsDistributed power generationElectric impedance measurementElectric load flowLearning algorithmsMATLABVortex flowDistributed generator (DGs)Distributed generatorsElectrical distribution networksLarge-scale optimizationMeta-heuristic optimization techniquesMeta-heuristic optimizationsOptimal power flowsSearch AlgorithmsOptimization16 October 2019 through 18 October 2019Blaabjerg, F., Kjaer, S.B., Power electronics as efficient interface in dispersed power generation systems (2004) IEEE Trans. Power Electron., 19 (5), pp. 1184-1194Carrasco, J.M., Power-electronic systems for the grid integration of renewable energy sources: A survey (2006) IEEE Trans. Ind. Electron., 53 (4), pp. 1002-1016Zhao, X., Chang, L., Shao, R., Spence, K., Power system support functions provided by smart inverters a review (2018) CPSS Trans. Power Electron. Appl., 3 (1), pp. 25-35Hossain, M.J., Pota, H.R., Mahmud, M.A., Aldeen, M., Robust control for power sharing in microgrids with low-inertia wind and PV generators (2015) IEEE Trans. Sustain. Energy, 6 (3), pp. 1067-1077Sultana, S., Roy, P.K., Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Appl. Soft Comput., 40, pp. 391-404Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (1018), pp. 1-27Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15 (5), pp. 890-900Sgouras, K.I., Bouhouras, A.S., Gkaidatzis, P.A., Doukas, D.I., Labridis, D.P., Impact of reverse power flow on the optimal distributed generation placement problem (2017) IET Gener. Transm. Distrib., 11 (18), pp. 4626-4632Mahat, P., Chen, Z., Bak-Jensen, B., Bak, C.L., A simple adaptive overcurrent protection of distribution systems with distributed generation (2011) IEEE Trans. Smart Grid, 2 (3), pp. 428-437Chao, L., Yongting, C., Xunjun, Z., Analysis and solution of voltage overvoltage problem in grid connection of distributed photovoltaic system (2018) 2018 China International Conference on Electricity Distribution (CICED), pp. 1114-1117. , pp., SeptemberEl-Khattam, W., Sidhu, T.S., Resolving the impact of distributed renewable generation on directional overcurrent relay coordination: A case study (2009) IET Renew. Power Gener., 3 (4), pp. 415-425Attia, A.-F., Sehiemy, R.A.E., Hasanien, H.M., Optimal power flow solution in power systems using a novel Sine-Cosine algorithm (2018) Int. J. Electr. Power Energy Syst., 99, pp. 331-343Moradi, M., Abedini, M., A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) Int. J. Electr. Power Energy Syst., 34 (1), pp. 66-74Abido, M.A., Optimal power flow using Tabu search algorithm (2002) Electr. Power Compon. Syst., 30 (5), pp. 469-483Injeti, S.K., Kumar, N.P., A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (2013) Int. J. Electr. Power Energy Syst., 45 (1), pp. 142-151Balachennaiah, P., Suryakalavathi, M., Nagendra, P., Firefly algorithm based solution to minimize the real power loss in a power system (2018) Ain Shams Eng. J., 9 (1), pp. 89-100Kumar, Y.A., Kumar, N.P., Optimal allocation of distribution generation units in radial distribution systems using nature inspired optimization techniques (2018) 2018 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), pp. 1-6. , pp., FebruarySudabattula, S.K., Kowsalya, M., , pp. 270-272Ozkıs, A., Babalık, A., A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm (2017) Inf. Sci., 402, pp. 124-148Marini, A., Mortazavi, S., Piegari, L., Ghazizadeh, M.-S., An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (2019) Electr. Power Syst. Res., 170, pp. 229-243Aydin, O., Tezcan, S., Eke, I., Taplamacioglu, M., , pp. 239-244Dogan, B., Olmez, T., Vortex search algorithm for the analog active filter component selection problem (2015) Aeu-Int. J. Electron. Commun., 69 (9), pp. 1243-1253Huang, S., Wu, Q., Wang, J., Zhao, H., A sufficient condition on convex relaxation of AC optimal power flow in distribution networks (2017) IEEE Trans. Power Syst., 32 (2), pp. 1359-1368Venzke, A., Halilbasic, L., Markovic, U., Hug, G., Chatzivasileiadis, S., Convex relaxations of chance constrained AC optimal power flow (2018) IEEE Trans. Power Syst., 33 (3), pp. 2829-2841Zamzam, A.S., Sidiropoulos, N.D., Dall’Anese, E., Beyond relaxation and Newton-Raphson: Solving AC OPF for multi-phase systems with renewables (2018) IEEE Trans. Smart Grid, 9 (5), pp. 3966-3975Miao, Z., Fan, L., Aghamolki, H.G., Zeng, B., Least squares estimation based SDP cuts for SOCP relaxation of AC OPF (2018) IEEE Trans. Autom. Control, 63 (1), pp. 241-248Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229. , http://www.sciencedirect.com/science/article/pii/S037877961500276XNejdawi, I.M., Clements, K.A., Davis, P.W., An efficient interior point method for sequential quadratic programming based optimal power flow (2000) IEEE Trans. Power Syst., 15 (4), pp. 1179-1183Teng, J.-H., A modified gauss-seidel algorithm of three-phase power flow analysis in distribution networks (2002) Int. J. Electr. Power Energy Syst., 24 (2), pp. 97-102Montoya, O.D., Gil, W.J., Garces, A., Optimal Power Flow for radial and mesh grids using semidefinite programming (2017) Tecno Logicas, 20 (40), pp. 29-42Ramli, M.A.M., Bouchekara, H.R.E.H., Estimation of solar radiation on PV panel surface with optimum tilt angle using vortex search algorithm (2018) IET Renew. Power Gener., 12 (10), pp. 1138-1145http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9182/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9182oai:repositorio.utb.edu.co:20.500.12585/91822023-05-25 14:59:13.916Repositorio Institucional UTBrepositorioutb@utb.edu.co