Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation

This express brief shows a convex quadratic approximation for the optimal power flow (OPF) in direct-current microgrids (dc-μ Grid) via Taylor's series expansion. This approach can be used for solving OPF problems on radial and meshed dc-μ Grids with multiple constant power terminals, allowing...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9138
Acceso en línea:
https://hdl.handle.net/20.500.12585/9138
Palabra clave:
Dc distribution
Dc systems
Direct current microgrids
Nonlinear dc circuits
Optimal power flow analysis
Acoustic generators
DC circuits
Dc distribution
DC system
Micro grid
Optimal power flows
Electric load flow
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7eeff5163af42bd02e74923527deaa46
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9138
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
title Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
spellingShingle Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
Dc distribution
Dc systems
Direct current microgrids
Nonlinear dc circuits
Optimal power flow analysis
Acoustic generators
DC circuits
Dc distribution
DC system
Micro grid
Optimal power flows
Electric load flow
title_short Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
title_full Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
title_fullStr Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
title_full_unstemmed Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
title_sort Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
dc.subject.keywords.none.fl_str_mv Dc distribution
Dc systems
Direct current microgrids
Nonlinear dc circuits
Optimal power flow analysis
Acoustic generators
DC circuits
Dc distribution
DC system
Micro grid
Optimal power flows
Electric load flow
topic Dc distribution
Dc systems
Direct current microgrids
Nonlinear dc circuits
Optimal power flow analysis
Acoustic generators
DC circuits
Dc distribution
DC system
Micro grid
Optimal power flows
Electric load flow
description This express brief shows a convex quadratic approximation for the optimal power flow (OPF) in direct-current microgrids (dc-μ Grid) via Taylor's series expansion. This approach can be used for solving OPF problems on radial and meshed dc-μ Grids with multiple constant power terminals, allowing to cover a wide range of configurations. Two test dc-μ Grids with 10 and 21 nodes were used to validate the proposed model. Nonlinear large-scale solvers were employed to compare the proposed linearization with the conventional nonlinear nonconvex model. © 2004-2012 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:02Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:02Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 6; pp. 1018-1022
dc.identifier.issn.none.fl_str_mv 15497747
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9138
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2018.2871432
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
36449223500
identifier_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 6; pp. 1018-1022
15497747
10.1109/TCSII.2018.2871432
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/9138
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053592822&doi=10.1109%2fTCSII.2018.2871432&partnerID=40&md5=5f3643cb9add9444d667e177ae9a44bc
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/1/MiniProdInv.png
https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/4/1-s2.0-S2590123022000184-main.pdf.jpg
https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/2/1-s2.0-S2590123022000184-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/3/1-s2.0-S2590123022000184-main.pdf.txt
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
38833ed6f4a6b76950d80c242d859baa
e973ae322e506b28369329df7da4b9c5
3b2d9b3e0b41c7509d48fd21d5eee639
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021697082228736
spelling 2020-03-26T16:33:02Z2020-03-26T16:33:02Z2019IEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 6; pp. 1018-102215497747https://hdl.handle.net/20.500.12585/913810.1109/TCSII.2018.2871432Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500This express brief shows a convex quadratic approximation for the optimal power flow (OPF) in direct-current microgrids (dc-μ Grid) via Taylor's series expansion. This approach can be used for solving OPF problems on radial and meshed dc-μ Grids with multiple constant power terminals, allowing to cover a wide range of configurations. Two test dc-μ Grids with 10 and 21 nodes were used to validate the proposed model. Nonlinear large-scale solvers were employed to compare the proposed linearization with the conventional nonlinear nonconvex model. © 2004-2012 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland GovernmentManuscript received June 20, 2018; revised August 10, 2018; accepted September 7, 2018. Date of publication September 20, 2018; date of current version May 28, 2019. This work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) under Grant 727-2015. This brief was recommended by Associate Editor Y.-M. Chen. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya is with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053592822&doi=10.1109%2fTCSII.2018.2871432&partnerID=40&md5=5f3643cb9add9444d667e177ae9a44bcOptimal Power Flow on DC Microgrids: A Quadratic Convex Approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Dc distributionDc systemsDirect current microgridsNonlinear dc circuitsOptimal power flow analysisAcoustic generatorsDC circuitsDc distributionDC systemMicro gridOptimal power flowsElectric load flowMontoya O.D.Gil-González, WalterGarces A.Dragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids-Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891. , JulElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417. , FebLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , SepSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , AugWang, Z., Liu, F., Chen, Y., Low, S.H., Mei, S., Unified distributed control of stand-alone DC microgrids IEEE Trans. Smart Grid, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8052512&isnumber=5446437, to be published. [Online]Molzahn, D.K., Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (5), pp. 672-676. , MaySur, U., Sarkar, G., A sufficient condition for multiple load flow solutions existence in three phase unbalanced active distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (6), pp. 784-788. , JunGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153. , OctGarcés, A., On the convergence of Newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , SepLavaei, J., Low, S.H., Zero duality gap in optimal power flow problem (2012) IEEE Trans. Power Syst., 27 (1), pp. 92-107. , FebMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381. , OctMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II, Express Briefs, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609, to be published. [Online]Low, S.H., Convex relaxation of optimal power flow-Part I: Formulations and equivalence (2014) IEEE Trans. Control Netw. Syst., 1 (1), pp. 15-27. , MarBahrami, S., Therrien, F., Wong, V.W.S., Jatskevich, J., Semidefinite relaxation of optimal power flow for AC-DC grids (2017) IEEE Trans. Power Syst., 32 (1), pp. 289-304. , JanVenzke, A., Halilbasic, L., Markovic, U., Hug, G., Chatzivasileiadis, S., Convex relaxations of chance constrained AC optimal power flow (2018) IEEE Trans. Power Syst., 33 (3), pp. 2829-2841. , MayNick, M., Cherkaoui, R., Boudec, J.-Y.L., Paolone, M., An exact convex formulation of the optimal power flow in radial distribution networks including transverse components (2018) IEEE Trans. Autom. Control, 63 (3), pp. 682-697. , MarGarces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229. , JanBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , JanGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , Aprhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S2590123022000184-main.pdf.jpg1-s2.0-S2590123022000184-main.pdf.jpgGenerated Thumbnailimage/jpeg102205https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/4/1-s2.0-S2590123022000184-main.pdf.jpg38833ed6f4a6b76950d80c242d859baaMD54ORIGINAL1-s2.0-S2590123022000184-main.pdf1-s2.0-S2590123022000184-main.pdfapplication/pdf632732https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/2/1-s2.0-S2590123022000184-main.pdfe973ae322e506b28369329df7da4b9c5MD52TEXT1-s2.0-S2590123022000184-main.pdf.txt1-s2.0-S2590123022000184-main.pdf.txtExtracted texttext/plain36962https://repositorio.utb.edu.co/bitstream/20.500.12585/9138/3/1-s2.0-S2590123022000184-main.pdf.txt3b2d9b3e0b41c7509d48fd21d5eee639MD5320.500.12585/9138oai:repositorio.utb.edu.co:20.500.12585/91382023-05-26 10:23:21.494Repositorio Institucional UTBrepositorioutb@utb.edu.co