Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview

In recent years, we have seen an increase in computer attacks through our communication networks worldwide, whether due to cybersecurity systems' vulnerability or their absence. This paper presents three quantum models to detect distributed denial of service attacks. We compare Quantum Support...

Full description

Autores:
Payares, Esteban
Martínez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10426
Acceso en línea:
https://hdl.handle.net/20.500.12585/10426
Palabra clave:
Quantum computing
Quantum machine learning
Quantum Processing Units
Cybersecurity
DDoS attacks
Smart Intrusion Detection Systems
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7e964d59f66232e27ebcebaa6eab08bb
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10426
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
title Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
spellingShingle Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
Quantum computing
Quantum machine learning
Quantum Processing Units
Cybersecurity
DDoS attacks
Smart Intrusion Detection Systems
LEMB
title_short Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
title_full Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
title_fullStr Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
title_full_unstemmed Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
title_sort Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview
dc.creator.fl_str_mv Payares, Esteban
Martínez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Payares, Esteban
Martínez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Quantum computing
Quantum machine learning
Quantum Processing Units
Cybersecurity
DDoS attacks
Smart Intrusion Detection Systems
topic Quantum computing
Quantum machine learning
Quantum Processing Units
Cybersecurity
DDoS attacks
Smart Intrusion Detection Systems
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In recent years, we have seen an increase in computer attacks through our communication networks worldwide, whether due to cybersecurity systems' vulnerability or their absence. This paper presents three quantum models to detect distributed denial of service attacks. We compare Quantum Support Vector Machines, hybrid Quantum- Classical Neural Networks, and a two-circuit ensemble model running parallel on two quantum processing units. Our work demonstrates quantum models' e ectiveness in supporting current and future cybersecurity systems by obtaining performances close to 100%, being 96% the worst-case scenario. It compares our models' performance in terms of accuracy and consumption of computational resources.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-03-01
dc.date.accessioned.none.fl_str_mv 2022-01-28T20:08:39Z
dc.date.available.none.fl_str_mv 2022-01-28T20:08:39Z
dc.date.submitted.none.fl_str_mv 2022-01-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv E. D. Payares, J. C. Martinez-Santos, "Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview," Proc. SPIE 11699, Quantum Computing, Communication, and Simulation, 116990B (5 March 2021); doi: 10.1117/12.2593297
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10426
dc.identifier.doi.none.fl_str_mv 10.1117/12.2593297
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv E. D. Payares, J. C. Martinez-Santos, "Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview," Proc. SPIE 11699, Quantum Computing, Communication, and Simulation, 116990B (5 March 2021); doi: 10.1117/12.2593297
10.1117/12.2593297
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10426
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Quantum Computing, Communication, and Simulation
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/1/116990B.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/4/116990B.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/5/116990B.pdf.jpg
bitstream.checksum.fl_str_mv 4f3ccaad8c0f67b0c4705f6e5eb476ce
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
930093766a64a56e4f89897e9c6fa7d7
2c64c1b314e4f664e2106403e224f818
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021795434463232
spelling Payares, Estebane0aac5f6-3be2-4211-a602-9a0f32c4602dMartínez-Santos, Juan Carlosbf60b2aa-faf9-4266-b888-19ba6fe3d3492022-01-28T20:08:39Z2022-01-28T20:08:39Z2021-03-012022-01-28E. D. Payares, J. C. Martinez-Santos, "Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview," Proc. SPIE 11699, Quantum Computing, Communication, and Simulation, 116990B (5 March 2021); doi: 10.1117/12.2593297https://hdl.handle.net/20.500.12585/1042610.1117/12.2593297Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn recent years, we have seen an increase in computer attacks through our communication networks worldwide, whether due to cybersecurity systems' vulnerability or their absence. This paper presents three quantum models to detect distributed denial of service attacks. We compare Quantum Support Vector Machines, hybrid Quantum- Classical Neural Networks, and a two-circuit ensemble model running parallel on two quantum processing units. Our work demonstrates quantum models' e ectiveness in supporting current and future cybersecurity systems by obtaining performances close to 100%, being 96% the worst-case scenario. It compares our models' performance in terms of accuracy and consumption of computational resources.11 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Quantum Computing, Communication, and SimulationQuantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Quantum computingQuantum machine learningQuantum Processing UnitsCybersecurityDDoS attacksSmart Intrusion Detection SystemsLEMBCartagena de IndiasHavenstein, C., Thomas, D., and Chandrasekaran, S., \Comparisons of Performance between Quantum and Classical Machine Learning," SMU Data Science Review 1 (Jan. 2019).Killoran, N., Bromley, T. R., Arrazola, J. M., Schuld, M., Quesada, N., and Lloyd, S., \Continuous-variable quantum neural networks," Physical Review Research 1, 033063 (Oct. 2019).Havl cek, V., C orcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., and Gambetta, J. M., \Supervised learning with quantum-enhanced feature spaces," Nature 567, 209{212 (Mar. 2019).Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S., \Quantum machine learning," Nature 549, 195{202 (Sept. 2017).Torlai, G. and Melko, R. G., \Machine-Learning Quantum States in the NISQ Era," Annual Review of Condensed Matter Physics 11, 325{344 (Mar. 2020).\The Quantum Computing Impact on Cybersecurity j QuantumXC."Mosca, M., \Cybersecurity in an era with quantum computers: Will we be ready?," IEEE Security Pri- vacy 16(5), 38{41 (2018).Abraham, H., AduO ei, Agarwal, R., Akhalwaya, I. Y., Aleksandrowicz, G., Alexander, T., Amy, M., Arbel, E., Arijit02, Asfaw, A., Avkhadiev, A., Azaustre, C., AzizNgoueya, Banerjee, A., Bansal, A., Barkoutsos, P., Barnawal, A., Barron, G., Barron, G. S., Bello, L., Ben-Haim, Y., Bevenius, D., Bhobe, A., Bishop, L. S., Blank, C., Bolos, S., Bosch, S., and et. al., \Qiskit: An open-source framework for quantum computing," (2019).Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M. S., Ahmed, S., Arrazola, J. M., Blank, C., Delgado, A., Jahangiri, S., McKiernan, K., Meyer, J. J., Niu, Z., Sz ava, A., and Killoran, N., \Penny- Lane: Automatic di erentiation of hybrid quantum-classical computations," arXiv:1811.04968 [physics, physics:quant-ph] (Feb. 2020). arXiv: 1811.04968.\DDoS 2019 j Datasets j Research j Canadian Institute for Cybersecurity j UNB."Abdi, H. and Williams, L. J., \Principal component analysis: Principal component analysis," Wiley Inter- disciplinary Reviews: Computational Statistics 2, 433{459 (July 2010).Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., and Killoran, N., \Quantum embeddings for machine learning," (2020). arXiv: 2001.03622Suykens, J. and Vandewalle, J. Neural Processing Letters 9(3), 293{300 (1999).Rebentrost, P., Mohseni, M., and Lloyd, S., \Quantum Support Vector Machine for Big Data Classi cation," Physical Review Letters 113, 130503 (Sept. 2014).J., A., Adedoyin, A., Ambrosiano, J., Anisimov, P., B artschi, A., Casper, W., Chennupati, G., Co rin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O'Malley, D., Oyen, D., Pakin, S., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N., Swart, P. J., Wendelberger, J. G., Yoon, B., Zamora, R., Zhu, W., Eidenbenz, S., Coles, P. J., Vu ray, M., and Lokhov, A. Y., \Quantum Algorithm Implementations for Beginners," arXiv:1804.03719 [quant-ph] (Mar. 2020). arXiv: 1804.03719.Abbas, A., Schuld, M., and Petruccione, F., \On quantum ensembles of quantum classi ers," arXiv:2001.10833 [quant-ph] (Jan. 2020). arXiv: 2001.10833.Broughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H., Isakov, S. V., Massey, P., Niu, M. Y., Halavati, R., Peters, E., Leib, M., Skolik, A., Streif, M., Von Dollen, D., McClean, J. R., Boixo, S., Bacon, D., Ho, A. K., Neven, H., and Mohseni, M., \TensorFlow Quantum: A Software Framework for Quantum Machine Learning," arXiv:2003.02989 [cond-mat, physics:quant-ph] (Mar. 2020). arXiv: 2003.02989McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H., \Barren plateaus in quantum neural network training landscapes," Nature Communications 9 (Nov. 2018).Schuld, M., Bocharov, A., Svore, K. M., and Wiebe, N., \Circuit-centric quantum classi ers," Physical Review A 101 (Mar 2020).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL116990B.pdf116990B.pdfapplication/pdf6056111https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/1/116990B.pdf4f3ccaad8c0f67b0c4705f6e5eb476ceMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT116990B.pdf.txt116990B.pdf.txtExtracted texttext/plain26316https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/4/116990B.pdf.txt930093766a64a56e4f89897e9c6fa7d7MD54THUMBNAIL116990B.pdf.jpg116990B.pdf.jpgGenerated Thumbnailimage/jpeg21129https://repositorio.utb.edu.co/bitstream/20.500.12585/10426/5/116990B.pdf.jpg2c64c1b314e4f664e2106403e224f818MD5520.500.12585/10426oai:repositorio.utb.edu.co:20.500.12585/104262023-05-26 16:27:43.688Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=