Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach
The problem of optimal siting and dimensioning of photovoltaic (PV) generators in medium-voltage distribution networks is addressed in this research from the perspective of combinatorial optimization. The exact mixed-integer programming (MINLP) model is solved using a master–slave (MS) optimization...
- Autores:
-
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Ramos-Paja, Carlos Andres
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12431
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12431
- Palabra clave:
- Placement;
Active Distribution Network;
Voltage Stability
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7e8426b6e1495f7f71fa85351253b9e9 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12431 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
title |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
spellingShingle |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach Placement; Active Distribution Network; Voltage Stability LEMB |
title_short |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
title_full |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
title_fullStr |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
title_full_unstemmed |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
title_sort |
Optimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approach |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Ramos-Paja, Carlos Andres |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Ramos-Paja, Carlos Andres |
dc.subject.keywords.spa.fl_str_mv |
Placement; Active Distribution Network; Voltage Stability |
topic |
Placement; Active Distribution Network; Voltage Stability LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The problem of optimal siting and dimensioning of photovoltaic (PV) generators in medium-voltage distribution networks is addressed in this research from the perspective of combinatorial optimization. The exact mixed-integer programming (MINLP) model is solved using a master–slave (MS) optimization approach. In the master stage, the generalized normal distribution optimization (GNDO) with a discrete–continuous codification is used to represent the locations and sizes of the PV generators. In the slave stage, the generalization of the backward/forward power method, known as the successive approximation power flow method, is adopted. Numerical simulations in the IEEE 33-bus and 69-bus systems demonstrated that the GNDO approach is the most efficient method for solving the exact MINLP model, as it obtained better results than the genetic algorithm, vortex-search algorithm, Newton-metaheuristic optimizer, and exact solution using the General Algebraic Modeling System (GAMS) software with the BONMIN solver. Simulations showed that, on average, the proposed MS optimizer reduced the total annual operative costs by approximately 27% for both test feeders when compared with the reference case. In addition, variations in renewable generation availability showed that from 30% ahead, positive reductions with respect to the reference case were obtained. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-25T12:10:42Z |
dc.date.available.none.fl_str_mv |
2023-07-25T12:10:42Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Ramos-Paja, C. A. (2022). Optimal allocation and sizing of PV generation units in distribution networks via the generalized normal distribution optimization approach. Computers, 11(4), 53. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12431 |
dc.identifier.doi.none.fl_str_mv |
10.3390/computers11040053 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O. D., Grisales-Noreña, L. F., & Ramos-Paja, C. A. (2022). Optimal allocation and sizing of PV generation units in distribution networks via the generalized normal distribution optimization approach. Computers, 11(4), 53. 10.3390/computers11040053 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12431 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
22 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Computers |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/1/computers-11-00053.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/4/computers-11-00053.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/5/computers-11-00053.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 8337c78237278046e10e33b890d657a4 4460e5956bc1d1639be9ae6146a50347 6457d8e5593d2d9e714304e3a4fc4fd0 52cabac47c2efacd6a040531be1fac0d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021776951214080 |
spelling |
Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea8Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Ramos-Paja, Carlos Andres6c8f6752-cad7-4a04-9a85-1d54832135102023-07-25T12:10:42Z2023-07-25T12:10:42Z20222023Montoya, O. D., Grisales-Noreña, L. F., & Ramos-Paja, C. A. (2022). Optimal allocation and sizing of PV generation units in distribution networks via the generalized normal distribution optimization approach. Computers, 11(4), 53.https://hdl.handle.net/20.500.12585/1243110.3390/computers11040053Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of optimal siting and dimensioning of photovoltaic (PV) generators in medium-voltage distribution networks is addressed in this research from the perspective of combinatorial optimization. The exact mixed-integer programming (MINLP) model is solved using a master–slave (MS) optimization approach. In the master stage, the generalized normal distribution optimization (GNDO) with a discrete–continuous codification is used to represent the locations and sizes of the PV generators. In the slave stage, the generalization of the backward/forward power method, known as the successive approximation power flow method, is adopted. Numerical simulations in the IEEE 33-bus and 69-bus systems demonstrated that the GNDO approach is the most efficient method for solving the exact MINLP model, as it obtained better results than the genetic algorithm, vortex-search algorithm, Newton-metaheuristic optimizer, and exact solution using the General Algebraic Modeling System (GAMS) software with the BONMIN solver. Simulations showed that, on average, the proposed MS optimizer reduced the total annual operative costs by approximately 27% for both test feeders when compared with the reference case. In addition, variations in renewable generation availability showed that from 30% ahead, positive reductions with respect to the reference case were obtained.22 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ComputersOptimal Allocation and Sizing of PV Generation Units in Distribution Networks via the Generalized Normal Distribution Optimization Approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Placement;Active Distribution Network;Voltage StabilityLEMBCartagena de IndiasMuhammad Ridzuan, M.I., Mohd Fauzi, N.F.F., Roslan, N.N.R., Mohd Saad, N. Urban and rural medium voltage networks reliability assessment (2020) SN Applied Sciences, 2 (2), art. no. 241. Cited 3 times. springer.com/snas doi: 10.1007/s42452-019-1612-zWidiputra, V., Kong, J., Yang, Y., Jung, J., Broadwater, R. Maximizing distributed energy resource hosting capacity of power system in South Korea using integrated feeder, distribution, and transmission system (2020) Energies, 13 (13), art. no. 3367. Cited 4 times. https://www.mdpi.com/1996-1073/13/13/3367 doi: 10.3390/en13133367Celli, G., Pilo, F., Pisano, G., Allegranza, V., Cicoria, R., Iaria, A. Meshed vs. radial MV distribution network in presence of large amount of DG (2004) 2004 IEEE PES Power Systems Conference and Exposition, 2, pp. 709-714. Cited 104 times. ISBN: 078038718XSadovskaia, K., Bogdanov, D., Honkapuro, S., Breyer, C. Power transmission and distribution losses – A model based on available empirical data and future trends for all countries globally (2019) International Journal of Electrical Power and Energy Systems, 107, pp. 98-109. Cited 64 times. doi: 10.1016/j.ijepes.2018.11.012Lima, M.A., Mendes, L.F.R., Mothé, G.A., Linhares, F.G., de Castro, M.P.P., da Silva, M.G., Sthel, M.S. Renewable energy in reducing greenhouse gas emissions: Reaching the goals of the Paris agreement in Brazil (2020) Environmental Development, 33, art. no. 100504. Cited 89 times. http://www.sciencedirect.com/science/journal/22114645 doi: 10.1016/j.envdev.2020.100504Pimm, A.J., Palczewski, J., Barbour, E.R., Cockerill, T.T. Using electricity storage to reduce greenhouse gas emissions (2021) Applied Energy, Part A 282, art. no. 116199. Cited 22 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2020.116199Rotz, C.A., Asem-Hiablie, S., Place, S., Thoma, G. Environmental footprints of beef cattle production in the United States (Open Access) (2019) Agricultural Systems, 169, pp. 1-13. Cited 106 times. www.elsevier.com/inca/publications/store/4/0/5/8/5/1 doi: 10.1016/j.agsy.2018.11.005Albuquerque, F.D.B., Maraqa, M.A., Chowdhury, R., Mauga, T., Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools (Open Access) (2020) Transportation Research Procedia, 48, pp. 2018-2030. Cited 23 times. www.journals.elsevier.com/transportation-research-procedia doi: 10.1016/j.trpro.2020.08.261Valencia, A., Hincapie, R.A., Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks (2021) Journal of Energy Storage, 34, art. no. 102158. Cited 61 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.102158López, A.R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F.C., Oberländer, N., Oei, P.-Y. Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market (2020) Renewable Energy, 148, pp. 1266-1279. Cited 46 times. http://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews/ doi: 10.1016/j.renene.2019.10.066Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C. Wind and power density data of strategic offshore locations in the Colombian Caribbean coast (Open Access) (2019) Data in Brief, 27, art. no. 104720. Cited 7 times. https://www.journals.elsevier.com/data-in-brief doi: 10.1016/j.dib.2019.104720Montoya, O.D., Rivas-Trujillo, E., Hernández, J.C. A Two-Stage Approach to Locate and Size PV Sources in Distribution Networks for Annual Grid Operative Costs Minimization (2022) Electronics (Switzerland), 11 (6), art. no. 961. Cited 4 times. https://www.mdpi.com/2079-9292/11/6/961/pdf doi: 10.3390/electronics11060961Chen, X., Du, Y., Lim, E., Wen, H., Yan, K., Kirtley, J. Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling (Open Access) (2020) Applied Energy, 268, art. no. 114980. Cited 29 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2020.114980Kumar, V., Pandey, A.S., Sinha, S.K. Grid integration and power quality issues of wind and solar energy system: A review (2016) International Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems, ICETEESES 2016, art. no. 7581355, pp. 71-80. Cited 95 times. ISBN: 978-150902118-5 doi: 10.1109/ICETEESES.2016.7581355Cortés-Caicedo, B., Molina-Martin, F., Grisales-Noreña, L.F., Montoya, O.D., Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm (2022) Sensors, 22 (3), art. no. 851. Cited 18 times. https://www.mdpi.com/1424-8220/22/3/851/pdf doi: 10.3390/s22030851Ngamprasert, P., Rugthaicharoencheep, N., Woothipatanapan, S. Application Improvement of Voltage Profile by Photovoltaic Farm on Distribution System (2019) Proceedings of the 2019 International Conference on Power, Energy and Innovations, ICPEI 2019, art. no. 8944997, pp. 98-101. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8938598 ISBN: 978-172815266-0 doi: 10.1109/ICPEI47862.2019.8944997Montoya, O.D., Grisales-Noreña, L.F., Perea-Moreno, A.-J. Optimal investments in PV sources for grid-connected distribution networks: An application of the discrete–continuous genetic algorithm (Open Access) (2021) Sustainability (Switzerland), 13 (24), art. no. 13633. Cited 16 times. https://www.mdpi.com/2071-1050/13/24/13633/pdf doi: 10.3390/su132413633Montoya, O.D., Grisales-Noreña, L.F., Alvarado-Barrios, L., Arias-Londoño, A., Álvarez-Arroyo, C. Efficient reduction in the annual investment costs in ac distribution networks via optimal integration of solar pv sources using the newton metaheuristic algorithm (Open Access) (2021) Applied Sciences (Switzerland), 11 (23), art. no. 11525. Cited 12 times. https://www.mdpi.com/2076-3417/11/23/11525/pdf doi: 10.3390/app112311525Wang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119Hraiz, M.D., García, J.A.M., Jiménez Castañeda, R., Muhsen, H. Optimal PV Size and Location to Reduce Active Power Losses while Achieving Very High Penetration Level with Improvement in Voltage Profile Using Modified Jaya Algorithm (2020) IEEE Journal of Photovoltaics, 10 (4), art. no. 9105113, pp. 1166-1174. Cited 20 times. https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5503869 doi: 10.1109/JPHOTOV.2020.2995580Mosbah, M., Khattara, A., Becherif, M., Arif, S. Optimal PV Location Choice Considering Static and Dynamic Constraints (2017) International Journal of Emerging Electric Power Systems, 18 (1), art. no. 20160141. Cited 14 times. www.degruyter.com/view/j/ijeeps doi: 10.1515/ijeeps-2016-0141Montoya, O.D., Grisales-Noreña, L.F., Giral-Ramírez, D.A. Optimal Placement and Sizing of PV Sources in Distribution Grids Using a Modified Gradient-Based Metaheuristic Optimizer (2022) Sustainability (Switzerland), 14 (6), art. no. 3318. Cited 9 times. https://www.mdpi.com/2071-1050/14/6/3318/pdf doi: 10.3390/su14063318Mokarram, M., Mokarram, M.J., Khosravi, M.R., Saber, A., Rahideh, A. Determination of the optimal location for constructing solar photovoltaic farms based on multi-criteria decision system and Dempster–Shafer theory (2020) Scientific Reports, 10 (1), art. no. 8200. Cited 33 times. www.nature.com/srep/index.html doi: 10.1038/s41598-020-65165-zBawazir, R.O., Cetin, N.S. Comprehensive overview of optimizing PV-DG allocation in power system and solar energy resource potential assessments (Open Access) (2020) Energy Reports, 6, pp. 173-208. Cited 63 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2019.12.010Zhang, Y., Jin, Z., Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models (2020) Energy Conversion and Management, 224, art. no. 113301. Cited 80 times. https://www.journals.elsevier.com/energy-conversion-and-management doi: 10.1016/j.enconman.2020.113301Marini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (Open Access) (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Casavola, A., Franzè, G., Carelli, N. Voltage regulation in networked electrical power systems for Distributed Generation: A constrained supervisory approach (Open Access) (2007) IFAC Proceedings Volumes (IFAC-PapersOnline), 7 (PART 1), pp. 1155-1160. Cited 3 times. http://www.ifac-papersonline.net/browser?browse=c ISBN: 978-390266128-9 doi: 10.3182/20070822-3-za-2920.00191Montoya, O.D., Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems (Open Access) (2020) Electric Power Systems Research, 187, art. no. 106454. Cited 39 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106454Shen, T., Li, Y., Xiang, J. A graph-based power flow method for balanced distribution systems (2018) Energies, 11 (3), art. no. 511. Cited 58 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11030511Sahin, O., Akay, B. Comparisons of metaheuristic algorithms and fitness functions on software test data generation (Open Access) (2016) Applied Soft Computing Journal, 49, pp. 1202-1214. Cited 56 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2016.09.045Abdel-Basset, M., Mohamed, R., Abouhawwash, M., Chang, V., Askar, S.S. A local search-based generalized normal distribution algorithm for permutation flow shop scheduling (Open Access) (2021) Applied Sciences (Switzerland), 11 (11), art. no. 4837. Cited 8 times. https://www.mdpi.com/2076-3417/11/11/4837/pdf doi: 10.3390/app11114837Doʇan, B., Ölmez, T. Vortex search algorithm for the analog active filter component selection problem (Open Access) (2015) AEU - International Journal of Electronics and Communications, 69 (9), pp. 1243-1253. Cited 46 times. http://www.elsevier.com/aeue doi: 10.1016/j.aeue.2015.05.005Xu, J., Zhang, J. Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis (Open Access) (2014) Proceedings of the 33rd Chinese Control Conference, CCC 2014, art. no. 6896450, pp. 8633-8638. Cited 50 times. http://ieeexplore.ieee.org// ISBN: 978-988156384-2 doi: 10.1109/ChiCC.2014.6896450Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488Wang, Q., Chang, P., Bai, R., Liu, W., Dai, J., Tang, Y. Mitigation strategy for duck curve in high photovoltaic penetration power system using concentrating solar power station (Open Access) (2019) Energies, 12 (18), art. no. 3521. Cited 24 times. https://www.mdpi.com/1996-1073/12/18# doi: 10.3390/en12183521http://purl.org/coar/resource_type/c_6501LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALcomputers-11-00053.pdfcomputers-11-00053.pdfapplication/pdf432319https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/1/computers-11-00053.pdf8337c78237278046e10e33b890d657a4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTcomputers-11-00053.pdf.txtcomputers-11-00053.pdf.txtExtracted texttext/plain67716https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/4/computers-11-00053.pdf.txt6457d8e5593d2d9e714304e3a4fc4fd0MD54THUMBNAILcomputers-11-00053.pdf.jpgcomputers-11-00053.pdf.jpgGenerated Thumbnailimage/jpeg8017https://repositorio.utb.edu.co/bitstream/20.500.12585/12431/5/computers-11-00053.pdf.jpg52cabac47c2efacd6a040531be1fac0dMD5520.500.12585/12431oai:repositorio.utb.edu.co:20.500.12585/124312023-07-26 00:17:43.629Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |