Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting

Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like mi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9186
Acceso en línea:
https://hdl.handle.net/20.500.12585/9186
Palabra clave:
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Sensor artifact.
Blood vessels
Cameras
Dust
Ophthalmology
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Pattern recognition
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7e40d2904eac96a24155b299b102b9a4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9186
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
title Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
spellingShingle Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Sensor artifact.
Blood vessels
Cameras
Dust
Ophthalmology
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Pattern recognition
title_short Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
title_full Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
title_fullStr Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
title_full_unstemmed Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
title_sort Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
dc.contributor.editor.none.fl_str_mv Alam M.S.
dc.subject.keywords.none.fl_str_mv Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Sensor artifact.
Blood vessels
Cameras
Dust
Ophthalmology
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Pattern recognition
topic Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Sensor artifact.
Blood vessels
Cameras
Dust
Ophthalmology
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Pattern recognition
description Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like microaneurysms. We propose a robust method for detecting dust artifacts from more than one image as input and, for the removal, we propose a sparse-based inpainting technique with dictionary learning. The detection is based on a closing operation to remove small dark features. We compute the difference with the original image to highlight the artifacts and perform a filtering approach with a filter bank of artifact models of different sizes. The candidate artifacts are identified via non-maxima suppression. Because the artifacts do not change position in the images, after processing all input images, the candidate artifacts which are not in the same approximate position in different images are rejected and kept unchanged in the image. The experimental results show that our method can successfully detect and remove artifacts, while ensuring the continuity of retinal structures, such as blood vessels. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:09Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:09Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10995
dc.identifier.isbn.none.fl_str_mv 9781510626553
dc.identifier.issn.none.fl_str_mv 0277786X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9186
dc.identifier.doi.none.fl_str_mv 10.1117/12.2519053
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56682678200
57209542195
24329839300
7201466399
identifier_str_mv Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10995
9781510626553
0277786X
10.1117/12.2519053
Universidad Tecnológica de Bolívar
Repositorio UTB
56682678200
57209542195
24329839300
7201466399
url https://hdl.handle.net/20.500.12585/9186
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 15 April 2019 through 16 April 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072595580&doi=10.1117%2f12.2519053&partnerID=40&md5=4929692788b6e66ba264a2136cd81838
Scopus2-s2.0-85072595580
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv Pattern Recognition and Tracking XXX 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9186/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021586458509312
spelling Alam M.S.Sierra E.Barrios E.Marrugo A.G.Millán M.S.2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099597815106265530277786Xhttps://hdl.handle.net/20.500.12585/918610.1117/12.2519053Universidad Tecnológica de BolívarRepositorio UTB5668267820057209542195243298393007201466399Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like microaneurysms. We propose a robust method for detecting dust artifacts from more than one image as input and, for the removal, we propose a sparse-based inpainting technique with dictionary learning. The detection is based on a closing operation to remove small dark features. We compute the difference with the original image to highlight the artifacts and perform a filtering approach with a filter bank of artifact models of different sizes. The candidate artifacts are identified via non-maxima suppression. Because the artifacts do not change position in the images, after processing all input images, the candidate artifacts which are not in the same approximate position in different images are rejected and kept unchanged in the image. The experimental results show that our method can successfully detect and remove artifacts, while ensuring the continuity of retinal structures, such as blood vessels. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.Universitat Politècnica de València, UPV ARC Centre of Excellence in Cognition and its Disorders, CCDThe Society of Photo-Optical Instrumentation Engineers (SPIE)The authors acknowledge the financial s upport f rom t he C entre d e C ooperació i D esenvolupament (CCD) at the Universitat Politècnica de Catalunya under project ref. CCD2018-U005, and from the Universidad Tec-nológica de Bol´ıvar. Authors are grateful to Juan Lu´ıs Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing the images.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072595580&doi=10.1117%2f12.2519053&partnerID=40&md5=4929692788b6e66ba264a2136cd81838Scopus2-s2.0-85072595580Pattern Recognition and Tracking XXX 2019Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpaintinginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fArtifact detectionDictionary learningDust particleInpaintingRetinal imageSensor artifact.Blood vesselsCamerasDustOphthalmologyArtifact detectionDictionary learningDust particleInpaintingRetinal imagePattern recognition15 April 2019 through 16 April 2019Abrámoff, M.D., Garvin, M.K., Sonka, M., Retinal imaging and image analysis (2010) IEEE Reviews in Biomedical Engineering, 3, pp. 169-208Marrugo, A.G., Retinal image analysis oriented to the clinical task (2014) Electronic Letters on Computer Vision and Image Analysis, 13 (2), pp. 54-55Marrugo, A.G., Millan, M.S., Retinal image analysis: Image processing and feature extraction oriented to the clinical task (2017) Optica Pura y Aplicada, 50 (1), pp. 49-62Suzuki, N., Distinction between manifestations of diabetic retinopathy and dust artifacts using threedimensional hsv color space (2016) World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 10 (3), pp. 153-159Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, V., Tanenbaum, H.L., Majerovics, A., Singh, H., Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy (2006) IEEE Transactions on Biomedical Engineering, 53 (6), pp. 1084-1098Willson, R.G., Maimone, M.W., Johnson, A.E., Scherr, L.M., An optical model for image artifacts produced by dust particles on lenses (2005) 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (I-SAIRAS)Mora, A.D., Soares, J., Fonseca, J.M., A template matching technique for artifacts detection in retinal images (2013) 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 717-722. , IEEENiemeijer, M., Abramoff, M.D., Van Ginneken, B., Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening (2006) Medical Image Analysis, 10 (6), pp. 888-898Marrugo, A.G., Millán, M.S., Cristóbal, G., Gabarda, S., Abril, H.C., No-reference quality metrics for eye fundus imaging (2011) Computer Analysis of Images and Patterns, pp. 486-493. , SpringerKöhler, T., Budai, A., Kraus, M.F., Odstrcilik, J., Michelson, G., Hornegger, J., Automatic noreference quality assessment for retinal fundus images using vessel segmentation (2013) Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95-100. , IEEEShah, S.A.A., Laude, A., Faye, I., Tang, T.B., Automated microaneurysm detection in diabetic retinopathy using curvelet transform (2016) Journal of Biomedical Optics, 21 (10), p. 101404Yang, P., Chen, L., Tian, J., Xu, X., Dust particle detection in surveillance video using salient visual descriptors (2017) Computers & Electrical Engineering, 62, pp. 224-231Chen, L., Zhu, D., Tian, J., Liu, J., Dust particle detection in traffic surveillance video using motion singularity analysis (2016) Digital Signal Processing, 58, pp. 127-133Hu, L., Chen, L., Cheng, J., Gray spot detection in surveillance video using convolutional neural network (2018) 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 2806-2810. , IEEESierra, E., Marrugo, A.G., Millán, M.S., Dust particle artifact detection and removal in retinal images (2017) Ó Ptica Pura y Aplicada, 50 (4), pp. 379-387Gonzalez, W., Woods, R.E., (2004) Eddins, Digital Image Processing Using Matlab, , Third New Jersey: Prentice HallLewis, J., Fast normalized cross-correlation (1995) Vision Interface, 10 (1), pp. 120-123Zhou, C., Lin, S., Removal of image artifacts due to sensor dust (2007) Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference On, pp. 1-8. , IEEEElad, M., From exact to approximate solutions (2010) Sparse and Redundant Representations, pp. 79-109. , SpringerGuillemot, C., Le Meur, O., Image inpainting: Overview and recent advances (2014) IEEE Signal Processing Magazine, 31 (1), pp. 127-144Engan, K., Aase, S.O., Husoy, J.H., Method of optimal directions for frame design (1999) Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference On, 5, pp. 2443-2446. , IEEEAharon, M., Elad, M., Bruckstein, A., K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation (2006) IEEE Transactions on Signal Processing, 54 (11), p. 4311Manat, S., Zhang, Z., Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9186/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9186oai:repositorio.utb.edu.co:20.500.12585/91862021-02-02 14:13:13.639Repositorio Institucional UTBrepositorioutb@utb.edu.co