Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting
Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like mi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9186
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9186
- Palabra clave:
- Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Sensor artifact.
Blood vessels
Cameras
Dust
Ophthalmology
Artifact detection
Dictionary learning
Dust particle
Inpainting
Retinal image
Pattern recognition
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7e40d2904eac96a24155b299b102b9a4 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9186 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
title |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
spellingShingle |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting Artifact detection Dictionary learning Dust particle Inpainting Retinal image Sensor artifact. Blood vessels Cameras Dust Ophthalmology Artifact detection Dictionary learning Dust particle Inpainting Retinal image Pattern recognition |
title_short |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
title_full |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
title_fullStr |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
title_full_unstemmed |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
title_sort |
Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting |
dc.contributor.editor.none.fl_str_mv |
Alam M.S. |
dc.subject.keywords.none.fl_str_mv |
Artifact detection Dictionary learning Dust particle Inpainting Retinal image Sensor artifact. Blood vessels Cameras Dust Ophthalmology Artifact detection Dictionary learning Dust particle Inpainting Retinal image Pattern recognition |
topic |
Artifact detection Dictionary learning Dust particle Inpainting Retinal image Sensor artifact. Blood vessels Cameras Dust Ophthalmology Artifact detection Dictionary learning Dust particle Inpainting Retinal image Pattern recognition |
description |
Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like microaneurysms. We propose a robust method for detecting dust artifacts from more than one image as input and, for the removal, we propose a sparse-based inpainting technique with dictionary learning. The detection is based on a closing operation to remove small dark features. We compute the difference with the original image to highlight the artifacts and perform a filtering approach with a filter bank of artifact models of different sizes. The candidate artifacts are identified via non-maxima suppression. Because the artifacts do not change position in the images, after processing all input images, the candidate artifacts which are not in the same approximate position in different images are rejected and kept unchanged in the image. The experimental results show that our method can successfully detect and remove artifacts, while ensuring the continuity of retinal structures, such as blood vessels. © 2019 SPIE. Downloading of the abstract is permitted for personal use only. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:09Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:09Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10995 |
dc.identifier.isbn.none.fl_str_mv |
9781510626553 |
dc.identifier.issn.none.fl_str_mv |
0277786X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9186 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2519053 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56682678200 57209542195 24329839300 7201466399 |
identifier_str_mv |
Proceedings of SPIE - The International Society for Optical Engineering; Vol. 10995 9781510626553 0277786X 10.1117/12.2519053 Universidad Tecnológica de Bolívar Repositorio UTB 56682678200 57209542195 24329839300 7201466399 |
url |
https://hdl.handle.net/20.500.12585/9186 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
15 April 2019 through 16 April 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85072595580&doi=10.1117%2f12.2519053&partnerID=40&md5=4929692788b6e66ba264a2136cd81838 Scopus2-s2.0-85072595580 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
Pattern Recognition and Tracking XXX 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9186/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021586458509312 |
spelling |
Alam M.S.Sierra E.Barrios E.Marrugo A.G.Millán M.S.2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Proceedings of SPIE - The International Society for Optical Engineering; Vol. 1099597815106265530277786Xhttps://hdl.handle.net/20.500.12585/918610.1117/12.2519053Universidad Tecnológica de BolívarRepositorio UTB5668267820057209542195243298393007201466399Retinal images are acquired with eye fundus cameras which, like any other camera, can suffer from dust particles attached to the sensor and lens. These particles impede light from reaching the sensor, and therefore they appear as dark spots in the image which can be mistaken as small lesions like microaneurysms. We propose a robust method for detecting dust artifacts from more than one image as input and, for the removal, we propose a sparse-based inpainting technique with dictionary learning. The detection is based on a closing operation to remove small dark features. We compute the difference with the original image to highlight the artifacts and perform a filtering approach with a filter bank of artifact models of different sizes. The candidate artifacts are identified via non-maxima suppression. Because the artifacts do not change position in the images, after processing all input images, the candidate artifacts which are not in the same approximate position in different images are rejected and kept unchanged in the image. The experimental results show that our method can successfully detect and remove artifacts, while ensuring the continuity of retinal structures, such as blood vessels. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.Universitat Politècnica de València, UPV ARC Centre of Excellence in Cognition and its Disorders, CCDThe Society of Photo-Optical Instrumentation Engineers (SPIE)The authors acknowledge the financial s upport f rom t he C entre d e C ooperació i D esenvolupament (CCD) at the Universitat Politècnica de Catalunya under project ref. CCD2018-U005, and from the Universidad Tec-nológica de Bol´ıvar. Authors are grateful to Juan Lu´ıs Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing the images.Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072595580&doi=10.1117%2f12.2519053&partnerID=40&md5=4929692788b6e66ba264a2136cd81838Scopus2-s2.0-85072595580Pattern Recognition and Tracking XXX 2019Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpaintinginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fArtifact detectionDictionary learningDust particleInpaintingRetinal imageSensor artifact.Blood vesselsCamerasDustOphthalmologyArtifact detectionDictionary learningDust particleInpaintingRetinal imagePattern recognition15 April 2019 through 16 April 2019Abrámoff, M.D., Garvin, M.K., Sonka, M., Retinal imaging and image analysis (2010) IEEE Reviews in Biomedical Engineering, 3, pp. 169-208Marrugo, A.G., Retinal image analysis oriented to the clinical task (2014) Electronic Letters on Computer Vision and Image Analysis, 13 (2), pp. 54-55Marrugo, A.G., Millan, M.S., Retinal image analysis: Image processing and feature extraction oriented to the clinical task (2017) Optica Pura y Aplicada, 50 (1), pp. 49-62Suzuki, N., Distinction between manifestations of diabetic retinopathy and dust artifacts using threedimensional hsv color space (2016) World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 10 (3), pp. 153-159Narasimha-Iyer, H., Can, A., Roysam, B., Stewart, V., Tanenbaum, H.L., Majerovics, A., Singh, H., Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy (2006) IEEE Transactions on Biomedical Engineering, 53 (6), pp. 1084-1098Willson, R.G., Maimone, M.W., Johnson, A.E., Scherr, L.M., An optical model for image artifacts produced by dust particles on lenses (2005) 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (I-SAIRAS)Mora, A.D., Soares, J., Fonseca, J.M., A template matching technique for artifacts detection in retinal images (2013) 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 717-722. , IEEENiemeijer, M., Abramoff, M.D., Van Ginneken, B., Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening (2006) Medical Image Analysis, 10 (6), pp. 888-898Marrugo, A.G., Millán, M.S., Cristóbal, G., Gabarda, S., Abril, H.C., No-reference quality metrics for eye fundus imaging (2011) Computer Analysis of Images and Patterns, pp. 486-493. , SpringerKöhler, T., Budai, A., Kraus, M.F., Odstrcilik, J., Michelson, G., Hornegger, J., Automatic noreference quality assessment for retinal fundus images using vessel segmentation (2013) Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95-100. , IEEEShah, S.A.A., Laude, A., Faye, I., Tang, T.B., Automated microaneurysm detection in diabetic retinopathy using curvelet transform (2016) Journal of Biomedical Optics, 21 (10), p. 101404Yang, P., Chen, L., Tian, J., Xu, X., Dust particle detection in surveillance video using salient visual descriptors (2017) Computers & Electrical Engineering, 62, pp. 224-231Chen, L., Zhu, D., Tian, J., Liu, J., Dust particle detection in traffic surveillance video using motion singularity analysis (2016) Digital Signal Processing, 58, pp. 127-133Hu, L., Chen, L., Cheng, J., Gray spot detection in surveillance video using convolutional neural network (2018) 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 2806-2810. , IEEESierra, E., Marrugo, A.G., Millán, M.S., Dust particle artifact detection and removal in retinal images (2017) Ó Ptica Pura y Aplicada, 50 (4), pp. 379-387Gonzalez, W., Woods, R.E., (2004) Eddins, Digital Image Processing Using Matlab, , Third New Jersey: Prentice HallLewis, J., Fast normalized cross-correlation (1995) Vision Interface, 10 (1), pp. 120-123Zhou, C., Lin, S., Removal of image artifacts due to sensor dust (2007) Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference On, pp. 1-8. , IEEEElad, M., From exact to approximate solutions (2010) Sparse and Redundant Representations, pp. 79-109. , SpringerGuillemot, C., Le Meur, O., Image inpainting: Overview and recent advances (2014) IEEE Signal Processing Magazine, 31 (1), pp. 127-144Engan, K., Aase, S.O., Husoy, J.H., Method of optimal directions for frame design (1999) Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference On, 5, pp. 2443-2446. , IEEEAharon, M., Elad, M., Bruckstein, A., K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation (2006) IEEE Transactions on Signal Processing, 54 (11), p. 4311Manat, S., Zhang, Z., Matching pursuit in a time-frequency dictionary (1993) IEEE Trans Signal Processing, 12, pp. 3397-3451http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9186/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9186oai:repositorio.utb.edu.co:20.500.12585/91862021-02-02 14:13:13.639Repositorio Institucional UTBrepositorioutb@utb.edu.co |