Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach
The stabilization problem of multi-terminal high-voltage direct current (MT-HVDC) systems feeding constant power loads is addressed in this paper using an inverse optimal control (IOC). A hierarchical control structure using a convex optimization model in the secondary control stage and the IOC in t...
- Autores:
-
Montoya, Oscar Danilo
Gil-González, Walter
Martin Serra, Federico
De Angelo, Cristian Hernan
Hernández, Jesus C.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10437
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10437
https://doi.org/10.3390/electronics10222819
- Palabra clave:
- Inverse optimal control
MT-HVDC systems
Global stabilization
Large disturbances
Kron’s reduction
Semidefinite programming
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7d87c944f251f3938f4a649eb6d24550 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10437 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
title |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
spellingShingle |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach Inverse optimal control MT-HVDC systems Global stabilization Large disturbances Kron’s reduction Semidefinite programming LEMB |
title_short |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
title_full |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
title_fullStr |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
title_full_unstemmed |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
title_sort |
Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Martin Serra, Federico De Angelo, Cristian Hernan Hernández, Jesus C. |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Martin Serra, Federico De Angelo, Cristian Hernan Hernández, Jesus C. |
dc.subject.keywords.spa.fl_str_mv |
Inverse optimal control MT-HVDC systems Global stabilization Large disturbances Kron’s reduction Semidefinite programming |
topic |
Inverse optimal control MT-HVDC systems Global stabilization Large disturbances Kron’s reduction Semidefinite programming LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The stabilization problem of multi-terminal high-voltage direct current (MT-HVDC) systems feeding constant power loads is addressed in this paper using an inverse optimal control (IOC). A hierarchical control structure using a convex optimization model in the secondary control stage and the IOC in the primary control stage is proposed to determine the set of references that allows the stabilization of the network under load variations. The main advantage of the IOC is that this control method ensures the closed-loop stability of the whole MT-HVDC system using a control Lyapunov function to determine the optimal control law. Numerical results in a reduced version of the CIGRE MT-HVDC system show the effectiveness of the IOC to stabilize the system under large disturbance scenarios, such as short-circuit events and topology changes. All the simulations are carried out in the MATLAB/Simulink environment. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-17 |
dc.date.accessioned.none.fl_str_mv |
2022-02-03T15:24:41Z |
dc.date.available.none.fl_str_mv |
2022-02-03T15:24:41Z |
dc.date.submitted.none.fl_str_mv |
2022-02-02 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O.D.; Gil-González, W.; Serra, F.M.; De Angelo, C.H.; Hernández, J.C. Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics 2021, 10, 2819. https://doi.org/10.3390/electronics10222819 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10437 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/electronics10222819 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O.D.; Gil-González, W.; Serra, F.M.; De Angelo, C.H.; Hernández, J.C. Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics 2021, 10, 2819. https://doi.org/10.3390/electronics10222819 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10437 https://doi.org/10.3390/electronics10222819 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
14 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Electronics - vol. 10 n° 22 (2021) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/1/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/4/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/5/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf.jpg |
bitstream.checksum.fl_str_mv |
0f99cc215bd0969b897265ff8042e33d 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 77464a02184f0af9981676f33247b045 427aecee96ff3b5b8e816b64fff3a693 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021652445396992 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter72191491-1c75-451d-a5c5-f7f45373ecd0Martin Serra, Federicoe9e063e5-cc5b-42c0-860e-d58b2bbd76b4De Angelo, Cristian Hernan1476b6d7-1a89-4201-bb96-5c45c0ac8635Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2022-02-03T15:24:41Z2022-02-03T15:24:41Z2021-11-172022-02-02Montoya, O.D.; Gil-González, W.; Serra, F.M.; De Angelo, C.H.; Hernández, J.C. Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics 2021, 10, 2819. https://doi.org/10.3390/electronics10222819https://hdl.handle.net/20.500.12585/10437https://doi.org/10.3390/electronics10222819Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe stabilization problem of multi-terminal high-voltage direct current (MT-HVDC) systems feeding constant power loads is addressed in this paper using an inverse optimal control (IOC). A hierarchical control structure using a convex optimization model in the secondary control stage and the IOC in the primary control stage is proposed to determine the set of references that allows the stabilization of the network under load variations. The main advantage of the IOC is that this control method ensures the closed-loop stability of the whole MT-HVDC system using a control Lyapunov function to determine the optimal control law. Numerical results in a reduced version of the CIGRE MT-HVDC system show the effectiveness of the IOC to stabilize the system under large disturbance scenarios, such as short-circuit events and topology changes. All the simulations are carried out in the MATLAB/Simulink environment.14 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Electronics - vol. 10 n° 22 (2021)Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Inverse optimal controlMT-HVDC systemsGlobal stabilizationLarge disturbancesKron’s reductionSemidefinite programmingLEMBCartagena de IndiasAlassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC transmission: Technology review, market trends and future outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554Xiang, X.; Merlin, M.M.C.; Green, T.C. Cost analysis and comparison of HVAC, LFAC and HVDC for offshore wind power connection. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China, 28–29 May 2016; pp. 1–6Elnady, A.; Adam, A. Decoupled State-Feedback Based Control Scheme for the Distributed Generation System. Electr. Power Components Syst. 2018, 46, 494–510Serra, F.M.; Angelo, C.H.D. Control of a battery charger for electric vehicles with unity power factor. Trans. Energy Syst. Eng. Appl. 2021, 2, 32–44Montoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 66, 1018–1022Yang, W.; Xu, Z.; Han, Z. Co-ordinated hierarchical control strategy for multi-infeed HVDC systems. IEE Proc.-Gener. Transm. Distrib. 2002, 149, 242.Fan, B.; Wang, K.; Zheng, Z.; Li, Y.; Wu, X. Hierarchical control system of modular multilevel converter used in high-voltage direct current transmission. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014Ramirez, D.A.; Garcés, A.; Mora-Flórez, J.J. A Convex Approximation for the Tertiary Control of Unbalanced Microgrids. Electr. Power Syst. Res. 2021, 199, 107423.Egea-Alvarez, A.; Beerten, J.; Hertem, D.V.; Gomis-Bellmunt, O. Primary and secondary power control of multiterminal HVDC grids. In Proceedings of the 10th IET International Conference on AC and DC Power Transmission (ACDC 2012), Birmingham, UK, 4–6 December 2012.Gil-González, W.; Montoya, O.D.; Garces, A. Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach. Int. J. Electr. Power Energy Syst. 2019, 110, 588–597Simiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506Zonetti, D.; Ortega, R.; Benchaib, A. A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014Hannan, M.A.; Hussin, I.; Ker, P.J.; Hoque, M.M.; Lipu, M.S.H.; Hussain, A.; Rahman, M.S.A.; Faizal, C.W.M.; Blaabjerg, F. Advanced Control Strategies of VSC Based HVDC Transmission System: Issues and Potential Recommendations. IEEE Access 2018, 6, 78352–78369.Simorgh, A.; Razminia, A.; Mobayen, S.; Baleanu, D. Optimal Control of a MIMO Bioreactor System Using Direct Approach. Int. J. Control. Autom. Syst. 2021, 19, 1159–1174.Mobayen, S. Optimal LMI-based state feedback stabilizer for uncertain nonlinear systems with time-Varying uncertainties and disturbances. Complexity 2016, 21, 356–362.Vega, C.; Alzate, R. Inverse optimal control on electric power conversion. In Proceedings of the 2014 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 5–7 November 2014Johnson, M.; Aghasadeghi, N.; Bretl, T. Inverse optimal control for deterministic continuous-time nonlinear systems. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013.Raza, A.; Shakeel, A.; Altalbe, A.; OAlassafi, M.; Yasin, A.R. Impacts of MT-HVDC Systems on Enhancing the Power Transmission Capability. Appl. Sci. 2020, 10, 242.Mohammadi, F.; Nazri, G.A.; Saif, M. An improved droop-based control strategy for MT-HVDC systems. Electronics 2020, 9, 87.Gavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41Montoya, O.D.; Gil-González, W.; Garces, A.; Serra, F.; Hernández, J.C. Stabilization of MT-HVDC grids via passivity-based control and convex optimization. Electr. Power Syst. Res. 2021, 196, 107273De Persis, C.; Weitenberg, E.R.; Dörfler, F. A power consensus algorithm for DC microgrids. Automatica 2018, 89, 364 – 375.Tucci, M.; Meng, L.; Guerrero, J.M.; Ferrari-Trecate, G. Stable current sharing and voltage balancing in DC microgrids: A consensus-based secondary control layer. Automatica 2018, 95, 1–13.Magne, P.; Nahid-Mobarakeh, B.; Pierfederici, S. General Active Global Stabilization of Multiloads DC-Power Networks. IEEE Trans. Power Electron. 2012, 27, 1788–1798.Vafamand, N.; Khooban, M.H.; Dragiˇcevi´c, T.; Blaabjerg, F. Networked Fuzzy Predictive Control of Power Buffers for Dynamic Stabilization of DC Microgrids. IEEE Trans. Ind. Electron. 2019, 66, 1356–1362Kardan, M.A.; Asemani, M.H.; Khayatian, A.; Vafamand, N.; Khooban, M.H.; Dragiˇcevi´c, T.; Blaabjerg, F. Improved Stabilization of Nonlinear DC Microgrids: Cubature Kalman Filter Approach. IEEE Trans. Ind. Appl. 2018, 54, 5104–5112.Mahmoudi, H.; Aleenejad, M.; Ahmadi, R. Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Del. 2017, 33, 2115–2124. Garces, A.; Montoya, D.; Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016.Sepulchre, R.; Jankovi´c, M.; Kokotovi´c, P.V. Constructive Nonlinear Control; Springer: London, UK, 1997Alanis, A.Y.; Lastire, E.A.; Arana-Daniel, N.; Lopez-Franco, C. Inverse Optimal Control with Speed Gradient for a Power Electric System Using a Neural Reduced Model. Math. Probl. Eng. 2014, 2014, 1–21Pérez, C.J.V.; Castaño, R.A. Inverse optimal control as an alternative to regulate a Boost DC-DC power converter. Rev. Tecnura 2015, 19, 65Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 2019, 169, 18–23Gil-González, W.; Molina-Cabrera, A.; Montoya, O.D.; Grisales-Noreña, L.F. An MI-SDP Model for Optimal Location and Sizing of Distributed Generators in DC Grids That Guarantees the Global Optimum. Appl. Sci. 2020, 10, 7681Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 66, 642–646.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdf[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdfapplication/pdf448824https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/1/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf0f99cc215bd0969b897265ff8042e33dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdf.txt[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdf.txtExtracted texttext/plain42899https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/4/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf.txt77464a02184f0af9981676f33247b045MD54THUMBNAIL[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdf.jpg[Art. 48] Global Optimal Stabilization of MT-_Oscar Danilo Montoya.pdf.jpgGenerated Thumbnailimage/jpeg99503https://repositorio.utb.edu.co/bitstream/20.500.12585/10437/5/%5bArt.%2048%5d%20Global%20Optimal%20Stabilization%20of%20MT-_Oscar%20Danilo%20Montoya.pdf.jpg427aecee96ff3b5b8e816b64fff3a693MD5520.500.12585/10437oai:repositorio.utb.edu.co:20.500.12585/104372022-02-04 02:30:43.106Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |