In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach

In the recent times, the race to cope with the increasing multidrug resistance of pathogenic bacteria has lost much of its momentum and health professionals are grasping for solutions to deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted effort toward...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8755
Acceso en línea:
https://hdl.handle.net/20.500.12585/8755
Palabra clave:
Antibacterial activity
Atom-based bilinear index
Linear discriminant analysis
QSAR
TOMOCOMD-CARDD software
Virtual screening
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7d1d7f97192a025787fa082500f2c467
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8755
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
title In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
spellingShingle In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
Antibacterial activity
Atom-based bilinear index
Linear discriminant analysis
QSAR
TOMOCOMD-CARDD software
Virtual screening
title_short In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
title_full In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
title_fullStr In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
title_full_unstemmed In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
title_sort In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach
dc.subject.keywords.none.fl_str_mv Antibacterial activity
Atom-based bilinear index
Linear discriminant analysis
QSAR
TOMOCOMD-CARDD software
Virtual screening
topic Antibacterial activity
Atom-based bilinear index
Linear discriminant analysis
QSAR
TOMOCOMD-CARDD software
Virtual screening
description In the recent times, the race to cope with the increasing multidrug resistance of pathogenic bacteria has lost much of its momentum and health professionals are grasping for solutions to deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted effort towards the development of new antimicrobial drugs to stay ahead in the fight against the ever adapting bacteria. In the present report, antibacterial classification functions (models) based on the topological molecular computational design-computer aided "rational" drug design (TOMOCOMD-CARDD) atom-based non-stochastic and stochastic bilinear indices are presented. These models were built using the linear discriminant analysis (LDA) method over a balanced chemical compounds dataset of 2230 molecular structures, with a diverse range of structural and molecular mechanism modes. The results of this study indicated that the non-stochastic and stochastic bilinear indices provided excellent classification of the chemical compounds (with accuracies of 86.31% and 84.92%, respectively, in the training set). These models were further externally validated yielding correct classification percentages of 86.55% and 87.91% for the non-stochastic and stochastic bilinear models, respectively. Additionally, the obtained models were compared with those reported in the literature and demonstrated comparable results, although the latter were built over much smaller datasets and with much higher degrees of freedom. Finally, simulated ligand-based virtual screening of 116 compounds, recently identified as potential antibacterials, was performed yielding 86.21% and 83.62% of correct classification, respectively, and thus demonstrating the utility of the obtained TOMOCOMD-CARDD models in the search of novel compounds with desirable antibacterial activity. © 2015 Sociedade Brasileira de Química.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:18Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:18Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of the Brazilian Chemical Society; Vol. 26, Núm. 6; pp. 1218-1226
dc.identifier.issn.none.fl_str_mv 0103-5053
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8755
dc.identifier.doi.none.fl_str_mv 10.5935/0103-5053.20150087
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Journal of the Brazilian Chemical Society; Vol. 26, Núm. 6; pp. 1218-1226
0103-5053
10.5935/0103-5053.20150087
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8755
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Quimica
publisher.none.fl_str_mv Sociedade Brasileira de Quimica
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84930670379&doi=10.5935%2f0103-5053.20150087&partnerID=40&md5=4c7de88705d23966586c61ca6ca1f80f
Scopus 7801470655
Scopus 55665599200
Scopus 55363486500
Scopus 6506280403
Scopus 9245734800
Scopus 6603869427
Scopus 7004872108
Scopus 6601927074
Scopus 6701762262
Scopus 7005333392
Scopus 56674579200
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/1/DOI10_59350103-5053_20150087.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/4/DOI10_59350103-5053_20150087.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/5/DOI10_59350103-5053_20150087.pdf.jpg
bitstream.checksum.fl_str_mv 3e8a7a21cc0812637383aeefbac895fc
1eb0515135d1e40ebd0a764b8ff71a63
fb52a5e7976cfaa1afbfe2686c78d900
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021808063512576
spelling 2019-11-06T19:05:18Z2019-11-06T19:05:18Z2015Journal of the Brazilian Chemical Society; Vol. 26, Núm. 6; pp. 1218-12260103-5053https://hdl.handle.net/20.500.12585/875510.5935/0103-5053.20150087Universidad Tecnológica de BolívarRepositorio UTBIn the recent times, the race to cope with the increasing multidrug resistance of pathogenic bacteria has lost much of its momentum and health professionals are grasping for solutions to deal with the unprecedented resistance levels. As a result, there is an urgent need for a concerted effort towards the development of new antimicrobial drugs to stay ahead in the fight against the ever adapting bacteria. In the present report, antibacterial classification functions (models) based on the topological molecular computational design-computer aided "rational" drug design (TOMOCOMD-CARDD) atom-based non-stochastic and stochastic bilinear indices are presented. These models were built using the linear discriminant analysis (LDA) method over a balanced chemical compounds dataset of 2230 molecular structures, with a diverse range of structural and molecular mechanism modes. The results of this study indicated that the non-stochastic and stochastic bilinear indices provided excellent classification of the chemical compounds (with accuracies of 86.31% and 84.92%, respectively, in the training set). These models were further externally validated yielding correct classification percentages of 86.55% and 87.91% for the non-stochastic and stochastic bilinear models, respectively. Additionally, the obtained models were compared with those reported in the literature and demonstrated comparable results, although the latter were built over much smaller datasets and with much higher degrees of freedom. Finally, simulated ligand-based virtual screening of 116 compounds, recently identified as potential antibacterials, was performed yielding 86.21% and 83.62% of correct classification, respectively, and thus demonstrating the utility of the obtained TOMOCOMD-CARDD models in the search of novel compounds with desirable antibacterial activity. © 2015 Sociedade Brasileira de Química.Recurso electrónicoapplication/pdfengSociedade Brasileira de Quimicahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84930670379&doi=10.5935%2f0103-5053.20150087&partnerID=40&md5=4c7de88705d23966586c61ca6ca1f80fScopus 7801470655Scopus 55665599200Scopus 55363486500Scopus 6506280403Scopus 9245734800Scopus 6603869427Scopus 7004872108Scopus 6601927074Scopus 6701762262Scopus 7005333392Scopus 56674579200In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Antibacterial activityAtom-based bilinear indexLinear discriminant analysisQSARTOMOCOMD-CARDD softwareVirtual screeningCastillo-Garit, J.A.Marrero-Ponce, Y.Barigye, S.J.Medina-Marrero, R.Bernal, M.G.De La Vega, J.M.G.Torrens, F.Arán, V.J.Pérez-Giménez, F.García-Domenech, R.Acevedo Barrios, RosaHede, K., (2014) Nature, 509, p. S2Projan, S.J., Shlaes, D.M., (2004) Clin. Microbiol. Infect., 10, p. 18McKenna, M., (2013) Nature, 499, p. 394Dimov, D., Nedyalkova, Z., Haladjova, S., Schüürmann, G., Mekenyan, O., (2001) QSAR Comb. Sci., 20, p. 298Greenwood, D., (1998) J. Med. Microbiol., 47, p. 751Tenover, F.C., (2001) Clin. Infect. Dis., 33, p. S108Hooper, D.C., (2001) Clin. Infect. Dis., 33, p. S157Collis, C., Hall, R., (1995) Antimicrob. Agents Chemother., 39, p. 155Xiong, Y., Caillon, J., Drugeon, H., Potel, G., Baron, D., (1996) Antimicrob. Agents Chemother., 40, p. 35Maskell, J., Sefton, A., Hall, L., (1997) Antimicrob. Agents Chemother., 41, p. 2121Marrero-Ponce, Y., Medina-Marrero, R., Torrens, F., Martinez, Y., Romero-Zaldivar, V., Castro, E.A., (2005) Bioorg. Med. Chem., 13, p. 2881Wölcke, J., Ullmann, D., (2001) Drug Discovery Today, 6, p. 637Cronin, M.T.D., Aptula, A.O., Dearden, J.C., Duffy, J.C., Netzeva, T.I., Patel, H., Rowe, P.H., Schuurmann, G., (2002) J. Chem. Inf. Comput. Sci., 42, p. 869Walters, W.P., Murcko, A.A., Murcko, M.A., (1999) Curr. Opin. Chem. Biol., 3, p. 384Seifert, M.H.J., Wolf, K., Vitt, D., (2003) BIOSILICO, 1, p. 143Mishra, R.K., Garcia-Domenech, R., Galvez, J., (2001) J. Chem. Inf. Comput. Sci., 41, p. 387Garcia-Domenech, R., De Julian-Ortiz, J.V., (1998) J. Chem. Inf. Comput. Sci., 38, p. 445Tomás-Vert, F., Pérez-Giménez, F., Salabert-Salvador, M.T., García-March, F.J., Jaén-Oltra, J., (2000) J. Mol. Struct.: Theochem, 504, p. 249Molina, E., Diaz, H.G., Gonzalez, M.P., Rodriguez, E., Uriarte, E., (2004) J. Chem. Inf. Comput. Sci., 44, p. 515Murcia-Soler, M., Perez-Gimenez, F., Garcia-March, F.J., Salabert-Salvador, M.T., Diaz-Villanueva, W., Castro-Bleda, M.J., Villanueva-Pareja, A., (2004) J. Chem. Inf. Comput. Sci., 44, p. 1031Cherkasov, A., (2005) Int. J. Mol. Sci., 6, p. 63Barigye, S.J., Marrero-Ponce, Y., López, Y.M., Santiago, O.M., Torrens, F., Domenech, R.G., Galvez, J., (2013) SAR QSAR Environ. Res., 24, p. 3Hansch, C., Fujita, T., (1964) J. Am. Chem. Soc., 86, p. 1616Hansch, C., Maloney, P.P., Fujita, T., Muir, R.M., (1962) Nature, 194, p. 178Roberts, D.W., Williams, D.L., (1982) J. Theor. Biol., 99, p. 807Estrada, E., Patlewicz, G., Chamberlain, M., Basketter, D., Larbey, S., (2003) Chem. Res. Toxicol., 16, p. 1226Miller, M.D., Yourtee, D.M., Glaros, A.G., Chappelow, C.C., Eick, J.D., Holder, A.J., (2005) J. Chem. Inf. Model., 45, p. 924Fedorowicz, A., Zheng, L., Singh, H., Demchuk, E., (2004) Int. J. Mol. Sci., 5, p. 56García-Jacas, C.R., Marrero-Ponce, Y., Acevedo-Martínez, L., Barigye, S.J., Valdés-Martiní, J.R., Contreras-Torres, E., (2014) J. Comp. Chem., 35, p. 1395Marrero-Ponce, Y., Castillo-Garit, J.A., Olazabal, E., Serrano, H.S., Morales, A., Castanedo, N., Ibarra-Velarde, F., Castro, E.A., (2005) Bioorg. Med. Chem., 13, p. 1005Marrero-Ponce, Y., Iyarreta-Veitia, M., Montero-Torres, A., Romero-Zaldivar, C., Brandt, C.A., Avila, P.E., Kirchgatter, K., Machado, Y., (2005) J. Chem. Inf. Comput. Sci., 45, p. 1082Marrero-Ponce, Y., Meneses-Marcel, A., Catillo-Garit, J.A., Machado-Tugores, Y., Escario, J.A., Gómez-Barrio, A., Montero Pereira, D., Rotondo, R., (2006) Bioorg. Med. Chem., 14, p. 6502Marrero-Ponce, Y., Casanola-Martin, G.M., Khan, M.T.H., Torrens, F., Rescigno, A., Abad, C., (2010) Curr. Pharm. Des., 16, p. 2601Marrero-Ponce, Y., Siverio-Mota, D., Gálvez-Llompart, M., Recio, M.C., Giner, R.M., García-Domènech, R., Torrens, F., Esguera, C.V., (2011) Eur. J. Med. Chem., 46, p. 5736Glasby, J.S., (1978) Encyclopedia of Antibiotics, , Woodhouse: Manchester(1996) The Merck Index, , 12th ed.Chapman and Hall: LondonNegwer, M., (1987) Organic-Chemical Drugs and their Synonyms, , Akademie: BerlinAnderson, R., Groundwater, P., Todd, A., Worsley, A., (2012) Antibacterial Agents: Chemistry, Mode of Action, Mechanisms of Resistance and Clinical Applications, , Wiley: WeinheimFlórez, J., (1998) Farmacología Humana, , 3ra ed.Masson, S.A.: BarcelonaMarrero-Ponce, Y., Marrero, R.M., Torrens, F., Martinez, Y., Bernal, M.G., Zaldivar, V.R., Castro, E.A., Abalo, R.G., (2006) J. Mol. Model., 12, p. 255Mc Farland, J.W., Gans, D.J., (1995) Chemometric Methods in Molecular Design, , Waterbeemd, H., Ed.VCH Publishers: New York 1, ch. 4Bryskier, A., (1998) Clin. Infect. Dis., 27, p. 865Bryskier, A., (2000) Clin. Infect. Dis., 31, p. 1423Karelson, M., (2000) Molecular Descriptors in QSAR/QSPR, , John Wiley & Sons: New YorkKatritzky, A.R., Gordeeva, E.V., (1993) J. Chem. Inf. Comput. Sci., 33, p. 835(1999) Topological Indices and Related Descriptors in QSAR and QSPR, , Gordon and Breach: Amsterdam, the NetherlandsMarrero-Ponce, Y., Khan, M.T.H., Casañola-Martín, G.M., Ather, A., Sultankhodzhaev, M.N., Torrens, F., Rotondo, R., (2007) ChemMedChem, 2, p. 449Marrero-Ponce, Y., Torrens, F., García-Domenech, R., Ortega-Broche, S.E., Zaldivar, V.R., (2008) J. Math. Chem., 44, p. 650Valdés-Martiní, J.R., Marrero-Ponce, Y., Barigye, S.J., García-Jacas, C.R., Almeida, Y.S.V.D., Morrel, C.A., (2014) TOMOCOMD, , CAMD-BIT International NetworkCartagena de Indias, Bolivar, ColombiaSTATISTICA Version 6(2001) Data Analysis Software System, , Tulsa, OklahomaJohnson, R.A., Wichern, D.W., (1988) Applied Multivariate Statistical Analysis, , Prentice-Hall: Englewood CliffsBaldi, P., Brunak, S., Chauvin, Y., Andersen, C.A., Nielsen, H., (2000) Bioinformatics, 16, p. 412Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M., Dougherty, E.R., (2010) Bioinformatics, 26, p. 822Penney, K.B., Smith, C.J., Allen, J.C., (1984) J. Invest. Dermatol., 82, p. 308Aptula, A., Kühne, R., Ebert, R., Cronin, M.T.D., Netzeva, T.I., Schüürmann, G., (2003) QSAR Comb. Sci., 22, p. 113González-Díaz, H., Torres-Gómez, L., Guevara, Y., Almeida, M., Molina, R., Castañedo, N., Santana, L., Uriarte, E., (2005) J. Mol. Model., 11, p. 116Cherkasov, A., Muratov, E.N., Fourches, D., Varnek, A., Baskin, I.I., Cronin, M., Dearden, J., Tropsha, A., (2013) J. Med. Chem., 57, p. 4977Zhu, H., Tropsha, A., Fourches, D., Varnek, A., Papa, E., Gramatica, P., Oberg, T., Tetko, I.V., (2008) J. Chem. Inf. Model., 48, p. 766http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_59350103-5053_20150087.pdfapplication/pdf276179https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/1/DOI10_59350103-5053_20150087.pdf3e8a7a21cc0812637383aeefbac895fcMD51TEXTDOI10_59350103-5053_20150087.pdf.txtDOI10_59350103-5053_20150087.pdf.txtExtracted texttext/plain39391https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/4/DOI10_59350103-5053_20150087.pdf.txt1eb0515135d1e40ebd0a764b8ff71a63MD54THUMBNAILDOI10_59350103-5053_20150087.pdf.jpgDOI10_59350103-5053_20150087.pdf.jpgGenerated Thumbnailimage/jpeg87592https://repositorio.utb.edu.co/bitstream/20.500.12585/8755/5/DOI10_59350103-5053_20150087.pdf.jpgfb52a5e7976cfaa1afbfe2686c78d900MD5520.500.12585/8755oai:repositorio.utb.edu.co:20.500.12585/87552023-05-26 16:14:22.849Repositorio Institucional UTBrepositorioutb@utb.edu.co