Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: A passivity-based approach

Abstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) i...

Full description

Autores:
Gil-Gonzalez, Walter
Garces, Alejandro
Montoya, Oscar Danilo
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12387
Acceso en línea:
https://hdl.handle.net/20.500.12585/12387
Palabra clave:
Asynchronous Generators;
Powerpoint;
Energy Conversion
LEMB
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:Abstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) is a Type-A turbine with squirrel cage induction generator (SCIG) and a capacitor bank. A passivity-based proportional-integral control (PI-PBC) is used that controls the power transfer of the SMES system to the power grid. The proposed controller is designed with two main objectives: First, to deliver (or absorb) a suitable active power to (or from) the power system, and second, to regulate the voltage of the WECS. The proposed PI-PBC guarantees asymptotically stability in closed-loop and exploits the advantages of the proportional-integral (PI) actions. Also, it presents a superior performance when it is compared to a conventional PI controller and a proportional feedback linearization controller. Simulation results carried-out in MATLAB/SIMULINK demonstrate the advantages of the proposed methodology. © 2019 IEEE.