Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: A passivity-based approach
Abstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) i...
- Autores:
-
Gil-Gonzalez, Walter
Garces, Alejandro
Montoya, Oscar Danilo
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12387
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12387
- Palabra clave:
- Asynchronous Generators;
Powerpoint;
Energy Conversion
LEMB
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
Summary: | Abstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) is a Type-A turbine with squirrel cage induction generator (SCIG) and a capacitor bank. A passivity-based proportional-integral control (PI-PBC) is used that controls the power transfer of the SMES system to the power grid. The proposed controller is designed with two main objectives: First, to deliver (or absorb) a suitable active power to (or from) the power system, and second, to regulate the voltage of the WECS. The proposed PI-PBC guarantees asymptotically stability in closed-loop and exploits the advantages of the proportional-integral (PI) actions. Also, it presents a superior performance when it is compared to a conventional PI controller and a proportional feedback linearization controller. Simulation results carried-out in MATLAB/SIMULINK demonstrate the advantages of the proposed methodology. © 2019 IEEE. |
---|