Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning

Ultrasound has been considered a safe and accurate alternative to radiography and computerized tomography to diagnose lung diseases such as pneumonia. However, speckle noise, artifacts or certain conditions can difficult image interpretation. For example, in some cases, the pleura line cannot be obs...

Full description

Autores:
Contreras Ojeda, Sara
Domínguez Jiménez, Juan Antonio
Contreras Ortiz, Sonia Helena
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9949
Acceso en línea:
https://hdl.handle.net/20.500.12585/9949
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/0000/Analysis-and-classification-of-lung-and-muscular-tissues-in-ultrasound/10.1117/12.2576368.short
Palabra clave:
Bioinformatics
Biological organs
Computerized tomography
Discrete wavelet transforms
Feature extraction
Histology
Image classification
Machine learning
Nearest neighbor search
Tissue
Ultrasonics
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_7a8a4580e8ea5b955ddbce3de8f0fe84
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9949
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
title Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
spellingShingle Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
Bioinformatics
Biological organs
Computerized tomography
Discrete wavelet transforms
Feature extraction
Histology
Image classification
Machine learning
Nearest neighbor search
Tissue
Ultrasonics
LEMB
title_short Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
title_full Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
title_fullStr Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
title_full_unstemmed Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
title_sort Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning
dc.creator.fl_str_mv Contreras Ojeda, Sara
Domínguez Jiménez, Juan Antonio
Contreras Ortiz, Sonia Helena
dc.contributor.author.none.fl_str_mv Contreras Ojeda, Sara
Domínguez Jiménez, Juan Antonio
Contreras Ortiz, Sonia Helena
dc.subject.keywords.spa.fl_str_mv Bioinformatics
Biological organs
Computerized tomography
Discrete wavelet transforms
Feature extraction
Histology
Image classification
Machine learning
Nearest neighbor search
Tissue
Ultrasonics
topic Bioinformatics
Biological organs
Computerized tomography
Discrete wavelet transforms
Feature extraction
Histology
Image classification
Machine learning
Nearest neighbor search
Tissue
Ultrasonics
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Ultrasound has been considered a safe and accurate alternative to radiography and computerized tomography to diagnose lung diseases such as pneumonia. However, speckle noise, artifacts or certain conditions can difficult image interpretation. For example, in some cases, the pleura line cannot be observed. This work proposes an approach for discriminating between lung and muscular tissues in ultrasound images. We evaluated the symlet and daubechies wavelets for feature extraction, principal component analysis and recursive backward elimination for feature selection, and supervised learning methods for classification. Statistical moments and the energy of the second horizontal coefficient and peak-to-peak root mean squared ratio were the features more outstanding over the rest. The best model was obtained with recursive backward elimination for feature selection and knearest neighbor for classification. Tissue classification was possible with a mean accuracy of 97.5% and area under the curve of 99%. These results offer great insights on the recognition of lung and muscular tissues, which could improve the effectiveness of automatic segmentation and analysis algorithms.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-03
dc.date.accessioned.none.fl_str_mv 2021-02-08T15:52:52Z
dc.date.available.none.fl_str_mv 2021-02-08T15:52:52Z
dc.date.submitted.none.fl_str_mv 2021-02-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv S. L. Contreras-Ojeda, J. A. Dominguez-Jiménez, and S. H. Contreras-Ortiz "Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830F (3 November 2020); https://doi.org/10.1117/12.2576368
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9949
dc.identifier.url.none.fl_str_mv https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/0000/Analysis-and-classification-of-lung-and-muscular-tissues-in-ultrasound/10.1117/12.2576368.short
dc.identifier.doi.none.fl_str_mv 10.1117/12.2576368
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv S. L. Contreras-Ojeda, J. A. Dominguez-Jiménez, and S. H. Contreras-Ortiz "Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830F (3 November 2020); https://doi.org/10.1117/12.2576368
10.1117/12.2576368
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9949
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/0000/Analysis-and-classification-of-lung-and-muscular-tissues-in-ultrasound/10.1117/12.2576368.short
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Proceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830F (2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/1/117.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/3/117.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/4/117.pdf.jpg
bitstream.checksum.fl_str_mv 2661321b7f88ef3635d4b1d73997808c
e20ad307a1c5f3f25af9304a7a7c86b6
000ac29bc17b4fecf07c3adf675ec742
4a65723fcda36843004369881c6834e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021663146115072
spelling Contreras Ojeda, Sara2f78dd6b-33ca-46d8-a5a0-bc083e4cd7e2Domínguez Jiménez, Juan Antoniod2ff9be0-9c22-42f6-a0eb-ce74b44b6ab2Contreras Ortiz, Sonia Helena690f7c84-d6e0-464a-b059-47146b2f92f52021-02-08T15:52:52Z2021-02-08T15:52:52Z2020-11-032021-02-03S. L. Contreras-Ojeda, J. A. Dominguez-Jiménez, and S. H. Contreras-Ortiz "Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learning", Proc. SPIE 11583, 16th International Symposium on Medical Information Processing and Analysis, 115830F (3 November 2020); https://doi.org/10.1117/12.2576368https://hdl.handle.net/20.500.12585/9949https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11583/0000/Analysis-and-classification-of-lung-and-muscular-tissues-in-ultrasound/10.1117/12.2576368.short10.1117/12.2576368Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarUltrasound has been considered a safe and accurate alternative to radiography and computerized tomography to diagnose lung diseases such as pneumonia. However, speckle noise, artifacts or certain conditions can difficult image interpretation. For example, in some cases, the pleura line cannot be observed. This work proposes an approach for discriminating between lung and muscular tissues in ultrasound images. We evaluated the symlet and daubechies wavelets for feature extraction, principal component analysis and recursive backward elimination for feature selection, and supervised learning methods for classification. Statistical moments and the energy of the second horizontal coefficient and peak-to-peak root mean squared ratio were the features more outstanding over the rest. The best model was obtained with recursive backward elimination for feature selection and knearest neighbor for classification. Tissue classification was possible with a mean accuracy of 97.5% and area under the curve of 99%. These results offer great insights on the recognition of lung and muscular tissues, which could improve the effectiveness of automatic segmentation and analysis algorithms.7 páginasapplication/pdfengProceedings Volume 11583, 16th International Symposium on Medical Information Processing and Analysis; 115830F (2020)Analysis and classification of lung and muscular tissues in ultrasound images using 2D wavelet transform and machine learninginfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85BioinformaticsBiological organsComputerized tomographyDiscrete wavelet transformsFeature extractionHistologyImage classificationMachine learningNearest neighbor searchTissueUltrasonicsLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasWielpütz, M.O., Heußel, C.P., Herth, F.J.F., Kauczor, H.-U. Radiological diagnosis in lung disease: Factoring treatment options into the choice of diagnostic modality (Open Access) (2014) Deutsches Arzteblatt International, 111 (11), pp. 181-187. Cited 26 times. http://www.aerzteblatt.de/pdf.asp?id=156439 doi: 10.3238/arztebl.2014.0181Reissig, A., Copetti, R., Mathis, G., Mempel, C., Schuler, A., Zechner, P., Aliberti, S., (...), Hoyer, H. Lung ultrasound in the diagnosis and follow-up of community-acquired pneumonia: A prospective, multicenter, diagnostic accuracy study (Open Access) (2012) Chest, 142 (4), pp. 965-972. Cited 236 times. http://journal.publications.chestnet.org/data/Journals/CHEST/25163/chest_142_4_965.pdf doi: 10.1378/chest.12-0364Soldati, G., Smargiassi, A., Inchingolo, R., Buonsenso, D., Perrone, T., Briganti, D.F., Perlini, S., (...), Demi, L. Proposal for International Standardization of the Use of Lung Ultrasound for Patients With COVID-19 (Open Access) (2020) Journal of Ultrasound in Medicine, 39 (7), pp. 1413-1419. Cited 137 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1550-9613 doi: 10.1002/jum.15285Buonsenso, D., Raffaelli, F., Tamburrini, E., Biasucci, D.G., Salvi, S., Smargiassi, A., Inchingolo, R., (...), Moro, F. Clinical role of lung ultrasound for diagnosis and monitoring of COVID-19 pneumonia in pregnant women (Open Access) (2020) Ultrasound in Obstetrics and Gynecology, 56 (1), pp. 106-109. Cited 44 times. http://obgyn.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1469-0705/ doi: 10.1002/uog.22055Zenteno, O., Castaneda, B., Lavarello, R. Spectral-based pneumonia detection tool using ultrasound data from pediatric populations (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-October, art. no. 7591635, pp. 4129-4132. Cited 7 times. ISBN: 978-145770220-4 doi: 10.1109/EMBC.2016.7591635Organization, W.H. (2019) Pneumonia. Cited 16 times. Last accessed 18 September 2019Du, R.-H., Liang, L.-R., Yang, C.-Q., Wang, W., Cao, T.-Z., Li, M., Guo, G.-Y., (...), Shi, H.-Z. Predictors of mortality for patients with COVID-19 pneumonia caused by SARSCoV- 2: A prospective cohort study (Open Access) (2020) European Respiratory Journal, 55 (5), art. no. e2000524. Cited 277 times. https://erj.ersjournals.com/content/erj/55/5/2000524.full.pdf doi: 10.1183/13993003.00524-2020ichtenstein, D.A. Ultrasound examination of the lungs in the intensive care unit (2009) Pediatric Critical Care Medicine, 10 (6), pp. 693-698. Cited 83 times. http://journals.lww.com/pccmjournal doi: 10.1097/PCC.0b013e3181b7f637Correa, M., Zimic, M., Barrientos, F., Barrientos, R., Román-Gonzalez, A., Pajuelo, M.J., Anticona, C., (...), Oberhelman, R. Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition (Open Access) (2018) PLoS ONE, 13 (12), art. no. e0206410. Cited 18 times. https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206410&type=printable doi: 10.1371/journal.pone.0206410Etehadtavakol, M., Ng, E.Y.K., Chandran, V., Rabbani, H. Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms (2013) Infrared Physics and Technology, 61, pp. 274-286. Cited 45 times. doi: 10.1016/j.infrared.2013.08.009Contreras-Ojeda, S.L., Sierra-Pardo, C., Dominguez-Jimenez, J.A., Lopez-Bueno, J., Contreras-Ortiz, S.H. Texture Analysis of Ultrasound Images for Pneumonia Detection in Pediatric Patients (2019) 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings, art. no. 8730238. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8719845 ISBN: 978-172811491-0 doi: 10.1109/STSIVA.2019.8730238Valdes-Burgos, L., Contreras-Ojeda, S.L., Domínguez-Jiménez, J.A., López-Bueno, J., Contreras-Ortiz, S.H. Analysis and classification of lung tissue in ultrasound images for pneumonia detection (2020) Proceedings of SPIE - The International Society for Optical Engineering, 11330, art. no. 1133003. http://spie.org/x1848.xml ISBN: 978-151063427-5 doi: 10.1117/12.2542615Yelampalli, P.K.R., Nayak, J., Gaidhane, V.H. Daubechies wavelet-based local feature descriptor for multimodal medical image registration (2018) IET Image Processing, 12 (10), pp. 1692-1702. Cited 12 times. www.ietdl.org/IET-IPR doi: 10.1049/iet-ipr.2017.1305Layek, K., Samanta, S., Sadhu, A., Maity, S.P., Barui, A. Classification of sonoelastography images of prostate cancer using transformation- based feature extraction techniques (2018) Soft Computing Based Medical Image Analysis, pp. 245-269. Cited 3 times. https://sciencedirect.utb.elogim.com/book/9780128130872/soft-computing-based-medical-image-analysis#book-description ISBN: 978-012813087-2 doi: 10.1016/B978-0-12-813087-2.00013-0Akkasaligar, P.T., Biradar, S. Diagnosis of renal calculus disease in medical ultrasound images (2016) 2016 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2016, art. no. 7919642. Cited 6 times. ISBN: 978-150900611-3 doi: 10.1109/ICCIC.2016.7919642Lever, J., Krzywinski, M., Altman, N. (2017) Points of Significance: Principal Component Analysis. Cited 7 times.Li, F., Yang, Y. Analysis of recursive feature elimination methods (2005) SIGIR 2005 - Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 633-634. Cited 5 times. ISBN: 1595930345; 978-159593034-7 doi: 10.1145/1076034.1076164http://purl.org/coar/resource_type/c_c94fORIGINAL117.pdf117.pdfAbstractapplication/pdf85023https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/1/117.pdf2661321b7f88ef3635d4b1d73997808cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT117.pdf.txt117.pdf.txtExtracted texttext/plain1343https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/3/117.pdf.txt000ac29bc17b4fecf07c3adf675ec742MD53THUMBNAIL117.pdf.jpg117.pdf.jpgGenerated Thumbnailimage/jpeg60793https://repositorio.utb.edu.co/bitstream/20.500.12585/9949/4/117.pdf.jpg4a65723fcda36843004369881c6834e0MD5420.500.12585/9949oai:repositorio.utb.edu.co:20.500.12585/99492023-05-26 08:13:12.518Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=