Sequential quadratic programming models for solving the OPF problem in DC grids
In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9156
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9156
- Palabra clave:
- Direct current power grids
Linearization via Newton–Raphson method
Optimal power flow problem
Quadratic reformulations
Voltage-current formulation
Acoustic generators
Constraint theory
Electric load flow
Electric power transmission networks
Linearization
Quadratic programming
Direct current power
Optimal power flow problem
Quadratic reformulations
Raphson methods
Voltage current
Problem solving
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7950de0c85b748f67b8655bd9610d0cc |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9156 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Sequential quadratic programming models for solving the OPF problem in DC grids |
title |
Sequential quadratic programming models for solving the OPF problem in DC grids |
spellingShingle |
Sequential quadratic programming models for solving the OPF problem in DC grids Direct current power grids Linearization via Newton–Raphson method Optimal power flow problem Quadratic reformulations Voltage-current formulation Acoustic generators Constraint theory Electric load flow Electric power transmission networks Linearization Quadratic programming Direct current power Optimal power flow problem Quadratic reformulations Raphson methods Voltage current Problem solving |
title_short |
Sequential quadratic programming models for solving the OPF problem in DC grids |
title_full |
Sequential quadratic programming models for solving the OPF problem in DC grids |
title_fullStr |
Sequential quadratic programming models for solving the OPF problem in DC grids |
title_full_unstemmed |
Sequential quadratic programming models for solving the OPF problem in DC grids |
title_sort |
Sequential quadratic programming models for solving the OPF problem in DC grids |
dc.subject.keywords.none.fl_str_mv |
Direct current power grids Linearization via Newton–Raphson method Optimal power flow problem Quadratic reformulations Voltage-current formulation Acoustic generators Constraint theory Electric load flow Electric power transmission networks Linearization Quadratic programming Direct current power Optimal power flow problem Quadratic reformulations Raphson methods Voltage current Problem solving |
topic |
Direct current power grids Linearization via Newton–Raphson method Optimal power flow problem Quadratic reformulations Voltage-current formulation Acoustic generators Constraint theory Electric load flow Electric power transmission networks Linearization Quadratic programming Direct current power Optimal power flow problem Quadratic reformulations Raphson methods Voltage current Problem solving |
description |
In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:05Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:05Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Electric Power Systems Research; Vol. 169, pp. 18-23 |
dc.identifier.issn.none.fl_str_mv |
03787796 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9156 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.epsr.2018.12.008 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 36449223500 |
identifier_str_mv |
Electric Power Systems Research; Vol. 169, pp. 18-23 03787796 10.1016/j.epsr.2018.12.008 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 36449223500 |
url |
https://hdl.handle.net/20.500.12585/9156 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9156/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021606462193664 |
spelling |
2020-03-26T16:33:05Z2020-03-26T16:33:05Z2019Electric Power Systems Research; Vol. 169, pp. 18-2303787796https://hdl.handle.net/20.500.12585/915610.1016/j.epsr.2018.12.008Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4Sequential quadratic programming models for solving the OPF problem in DC gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current power gridsLinearization via Newton–Raphson methodOptimal power flow problemQuadratic reformulationsVoltage-current formulationAcoustic generatorsConstraint theoryElectric load flowElectric power transmission networksLinearizationQuadratic programmingDirect current powerOptimal power flow problemQuadratic reformulationsRaphson methodsVoltage currentProblem solvingMontoya O.D.Gil-González W.Garces A.Dragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids. Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electric Power Syst. Res., 119, pp. 407-417Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Hamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustain. Cities Soc., 27, pp. 129-136Donde, V., Feng, X., Segerqvist, I., Callavik, M., Distributed state estimation of hybrid AC/HVDC grids by network decomposition (2016) IEEE Trans. Smart Grid, 7 (2), pp. 974-981Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1Garces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electric Power Syst. Res., 130, pp. 222-229Montoya, O.D., Garces, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8 (6), pp. 2754-2764Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217Low, S., Gayme, D., Topcu, U., Convexifying optimal power flow: recent advances in OPF solution methods (2013) 2013 American Control Conference, p. 5245Gan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21, pp. 1-8. , 2019Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circ. Syst. II, p. 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res., 151, pp. 149-153Nesterov, Y., Lectures on Convex Optimization, Springer Optimization and Its Applications (2018), https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishinghttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9156/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9156oai:repositorio.utb.edu.co:20.500.12585/91562021-02-02 14:44:54.452Repositorio Institucional UTBrepositorioutb@utb.edu.co |