Sequential quadratic programming models for solving the OPF problem in DC grids

In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9156
Acceso en línea:
https://hdl.handle.net/20.500.12585/9156
Palabra clave:
Direct current power grids
Linearization via Newton–Raphson method
Optimal power flow problem
Quadratic reformulations
Voltage-current formulation
Acoustic generators
Constraint theory
Electric load flow
Electric power transmission networks
Linearization
Quadratic programming
Direct current power
Optimal power flow problem
Quadratic reformulations
Raphson methods
Voltage current
Problem solving
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7950de0c85b748f67b8655bd9610d0cc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9156
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Sequential quadratic programming models for solving the OPF problem in DC grids
title Sequential quadratic programming models for solving the OPF problem in DC grids
spellingShingle Sequential quadratic programming models for solving the OPF problem in DC grids
Direct current power grids
Linearization via Newton–Raphson method
Optimal power flow problem
Quadratic reformulations
Voltage-current formulation
Acoustic generators
Constraint theory
Electric load flow
Electric power transmission networks
Linearization
Quadratic programming
Direct current power
Optimal power flow problem
Quadratic reformulations
Raphson methods
Voltage current
Problem solving
title_short Sequential quadratic programming models for solving the OPF problem in DC grids
title_full Sequential quadratic programming models for solving the OPF problem in DC grids
title_fullStr Sequential quadratic programming models for solving the OPF problem in DC grids
title_full_unstemmed Sequential quadratic programming models for solving the OPF problem in DC grids
title_sort Sequential quadratic programming models for solving the OPF problem in DC grids
dc.subject.keywords.none.fl_str_mv Direct current power grids
Linearization via Newton–Raphson method
Optimal power flow problem
Quadratic reformulations
Voltage-current formulation
Acoustic generators
Constraint theory
Electric load flow
Electric power transmission networks
Linearization
Quadratic programming
Direct current power
Optimal power flow problem
Quadratic reformulations
Raphson methods
Voltage current
Problem solving
topic Direct current power grids
Linearization via Newton–Raphson method
Optimal power flow problem
Quadratic reformulations
Voltage-current formulation
Acoustic generators
Constraint theory
Electric load flow
Electric power transmission networks
Linearization
Quadratic programming
Direct current power
Optimal power flow problem
Quadratic reformulations
Raphson methods
Voltage current
Problem solving
description In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:05Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:05Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Electric Power Systems Research; Vol. 169, pp. 18-23
dc.identifier.issn.none.fl_str_mv 03787796
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9156
dc.identifier.doi.none.fl_str_mv 10.1016/j.epsr.2018.12.008
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
57191493648
36449223500
identifier_str_mv Electric Power Systems Research; Vol. 169, pp. 18-23
03787796
10.1016/j.epsr.2018.12.008
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
57191493648
36449223500
url https://hdl.handle.net/20.500.12585/9156
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9156/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397576141012992
spelling 2020-03-26T16:33:05Z2020-03-26T16:33:05Z2019Electric Power Systems Research; Vol. 169, pp. 18-2303787796https://hdl.handle.net/20.500.12585/915610.1016/j.epsr.2018.12.008Universidad Tecnológica de BolívarRepositorio UTB569195641005719149364836449223500In this paper, we address the optimal power flow problem in dc grids (OPF-DC). Our approach is based on sequential quadratic programming which solves the problem associated with non-convexity of the model. We propose two different linearizations and compare them to a non-linear algorithm. The first model is a Newton-based linearization which takes the Jacobian of the power flow as a linearization for the optimization stage, and the second model uses the nodal currents as auxiliary variables to linearize over the inequality constraints. Simulation results in radial and meshed grids demonstrate the efficiency of the proposed methodology and allow finding the same solution given by the exact nonlinear representation of the OPF-DC problem. © 2018 Elsevier B.V.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASThis work was partially supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85058962996&doi=10.1016%2fj.epsr.2018.12.008&partnerID=40&md5=5d7e0d6890ebfa62d8ba875956c3b1e4Sequential quadratic programming models for solving the OPF problem in DC gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct current power gridsLinearization via Newton–Raphson methodOptimal power flow problemQuadratic reformulationsVoltage-current formulationAcoustic generatorsConstraint theoryElectric load flowElectric power transmission networksLinearizationQuadratic programmingDirect current powerOptimal power flow problemQuadratic reformulationsRaphson methodsVoltage currentProblem solvingMontoya O.D.Gil-González W.Garces A.Dragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids. Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electric Power Syst. Res., 119, pp. 407-417Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Hamad, A.A., El-Saadany, E.F., Multi-agent supervisory control for optimal economic dispatch in DC microgrids (2016) Sustain. Cities Soc., 27, pp. 129-136Donde, V., Feng, X., Segerqvist, I., Callavik, M., Distributed state estimation of hybrid AC/HVDC grids by network decomposition (2016) IEEE Trans. Smart Grid, 7 (2), pp. 974-981Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., p. 1Garces, A., On convergence of newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1Garces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electric Power Syst. Res., 130, pp. 222-229Montoya, O.D., Garces, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8 (6), pp. 2754-2764Garces, A., Montoya, D., Torres, R., Optimal power flow in multiterminal hvdc systems considering DC/DC converters (2016) 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217Low, S., Gayme, D., Topcu, U., Convexifying optimal power flow: recent advances in OPF solution methods (2013) 2013 American Control Conference, p. 5245Gan, L., Low, S.H., Optimal power flow in direct current networks (2014) IEEE Trans. Power Syst., 29 (6), pp. 2892-2904Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21, pp. 1-8. , 2019Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: a quadratic convex approximation (2018) IEEE Trans. Circ. Syst. II, p. 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Syst. Res., 151, pp. 149-153Nesterov, Y., Lectures on Convex Optimization, Springer Optimization and Its Applications (2018), https://books.google.com.co/books?id=JSyNtQEACAAJ, Springer International Publishinghttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9156/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9156oai:repositorio.utb.edu.co:20.500.12585/91562021-02-02 14:44:54.452Repositorio Institucional UTBrepositorioutb@utb.edu.co