Distributed energy resources integration in AC Grids: A family of passivity-based controllers

This paper presents the design and application of passivity-based control theory for distributed energy resources (DERs) integration through voltage source converters (VSC) in ac single-phase grids. The Hamiltonian representation of these grids facilitates the development of passive controllers that...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8724
Acceso en línea:
https://hdl.handle.net/20.500.12585/8724
Palabra clave:
Distributed energy resources
Passivity-based control
Single-phase ac grids
Voltage source converters
Asymptotic stability
Controllers
Energy resources
MATLAB
Power control
Power converters
Two term control systems
AC-grid
Active and Reactive Power
Distributed energy resources
MATLAB/Simulink environment
Passivity based control
Passivity-based controllers
Proportional integral controllers
Voltage source converters
Electric power system control
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_78c516ada89b365885d33dc76137575c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8724
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Distributed energy resources integration in AC Grids: A family of passivity-based controllers
dc.title.alternative.none.fl_str_mv Integración de REDs en Redes AC: Una familia de controladores basados en pasividad
title Distributed energy resources integration in AC Grids: A family of passivity-based controllers
spellingShingle Distributed energy resources integration in AC Grids: A family of passivity-based controllers
Distributed energy resources
Passivity-based control
Single-phase ac grids
Voltage source converters
Asymptotic stability
Controllers
Energy resources
MATLAB
Power control
Power converters
Two term control systems
AC-grid
Active and Reactive Power
Distributed energy resources
MATLAB/Simulink environment
Passivity based control
Passivity-based controllers
Proportional integral controllers
Voltage source converters
Electric power system control
title_short Distributed energy resources integration in AC Grids: A family of passivity-based controllers
title_full Distributed energy resources integration in AC Grids: A family of passivity-based controllers
title_fullStr Distributed energy resources integration in AC Grids: A family of passivity-based controllers
title_full_unstemmed Distributed energy resources integration in AC Grids: A family of passivity-based controllers
title_sort Distributed energy resources integration in AC Grids: A family of passivity-based controllers
dc.subject.keywords.none.fl_str_mv Distributed energy resources
Passivity-based control
Single-phase ac grids
Voltage source converters
Asymptotic stability
Controllers
Energy resources
MATLAB
Power control
Power converters
Two term control systems
AC-grid
Active and Reactive Power
Distributed energy resources
MATLAB/Simulink environment
Passivity based control
Passivity-based controllers
Proportional integral controllers
Voltage source converters
Electric power system control
topic Distributed energy resources
Passivity-based control
Single-phase ac grids
Voltage source converters
Asymptotic stability
Controllers
Energy resources
MATLAB
Power control
Power converters
Two term control systems
AC-grid
Active and Reactive Power
Distributed energy resources
MATLAB/Simulink environment
Passivity based control
Passivity-based controllers
Proportional integral controllers
Voltage source converters
Electric power system control
description This paper presents the design and application of passivity-based control theory for distributed energy resources (DERs) integration through voltage source converters (VSC) in ac single-phase grids. The Hamiltonian representation of these grids facilitates the development of passive controllers that guarantee stability in the sense of Lyapunov for their closed-loop operation. The non- autonomous dynamic modeling of these systems is transformed into an incremental model, which allows solving the tracking as a regulation problem. The main contribution of this paper is in the ability to control the active and reactive power transference between DERs and the ac single-phase grid depending on the availability of the primary energy resource and the capacity of the converters. Simulations results show that all proposed controllers attain the control objective, reaching the same dynamic performance as classical proportional-integral controllers and guaranteeing asymptotic stability. All simulations are developed under the MATLAB/Simulink environment through the SimPowerSystems tool. © 2019 Universitat Politecnica de Valencia. All Rights Reserved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:10Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:10Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv RIAI - Revista Iberoamericana de Automatica e Informatica Industrial; Vol. 16, Núm. 2; pp. 212-221
dc.identifier.issn.none.fl_str_mv 1697-7912
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8724
dc.identifier.doi.none.fl_str_mv 10.4995/riai.2018.10666
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv RIAI - Revista Iberoamericana de Automatica e Informatica Industrial; Vol. 16, Núm. 2; pp. 212-221
1697-7912
10.4995/riai.2018.10666
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8724
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universitat Politecnica de Valencia
publisher.none.fl_str_mv Universitat Politecnica de Valencia
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063724667&doi=10.4995%2friai.2018.10666&partnerID=40&md5=25a7df08d0036cf5b9435e41f2152cd7
Scopus 56919564100
Scopus 57191493648
Scopus 51461033000
Scopus 36449223500
Scopus 55989699400
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/1/DOI10_4995riai_2018_10666.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/4/DOI10_4995riai_2018_10666.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/5/DOI10_4995riai_2018_10666.pdf.jpg
bitstream.checksum.fl_str_mv 214f1e9e809bd2c88735ba913c8804ac
b739db1300e68230a2ce23ce52559561
de5369e8d385e8a68674f791a2f947ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021632185860096
spelling 2019-11-06T19:05:10Z2019-11-06T19:05:10Z2019RIAI - Revista Iberoamericana de Automatica e Informatica Industrial; Vol. 16, Núm. 2; pp. 212-2211697-7912https://hdl.handle.net/20.500.12585/872410.4995/riai.2018.10666Universidad Tecnológica de BolívarRepositorio UTBThis paper presents the design and application of passivity-based control theory for distributed energy resources (DERs) integration through voltage source converters (VSC) in ac single-phase grids. The Hamiltonian representation of these grids facilitates the development of passive controllers that guarantee stability in the sense of Lyapunov for their closed-loop operation. The non- autonomous dynamic modeling of these systems is transformed into an incremental model, which allows solving the tracking as a regulation problem. The main contribution of this paper is in the ability to control the active and reactive power transference between DERs and the ac single-phase grid depending on the availability of the primary energy resource and the capacity of the converters. Simulations results show that all proposed controllers attain the control objective, reaching the same dynamic performance as classical proportional-integral controllers and guaranteeing asymptotic stability. All simulations are developed under the MATLAB/Simulink environment through the SimPowerSystems tool. © 2019 Universitat Politecnica de Valencia. All Rights Reserved.Recurso electrónicoapplication/pdfengUniversitat Politecnica de Valenciahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063724667&doi=10.4995%2friai.2018.10666&partnerID=40&md5=25a7df08d0036cf5b9435e41f2152cd7Scopus 56919564100Scopus 57191493648Scopus 51461033000Scopus 36449223500Scopus 55989699400Distributed energy resources integration in AC Grids: A family of passivity-based controllersIntegración de REDs en Redes AC: Una familia de controladores basados en pasividadinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Distributed energy resourcesPassivity-based controlSingle-phase ac gridsVoltage source convertersAsymptotic stabilityControllersEnergy resourcesMATLABPower controlPower convertersTwo term control systemsAC-gridActive and Reactive PowerDistributed energy resourcesMATLAB/Simulink environmentPassivity based controlPassivity-based controllersProportional integral controllersVoltage source convertersElectric power system controlMontoya, O.D.Gil-González, WalterAvila-Becerril, S.Garcés, AlejandroEspinosa-Pérez, G.Avila-Becerril, S., Espinosa-Pérez, G., Canseco-Rodal, R., On the control of power flows in microgrids (2017) Decision and Control (CDC), 2017 IEEE 56th Annual Conference on, pp. 3252-3257. , IEEEAvila-Becerril, S., Montoya, O.D., Espinosa-Pérez, G., Garcés, A., Control of a detailed model of microgrids from a hamiltonian approach (2018) IFACPapersOnLine, 51 (3), pp. 187-192. , 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018Bahrani, B., Rufer, A., Kenzelmann, S., Lopes, L.A.C., Vector control of single-phase voltage-source converters based on fictive-axis emulation (2011) IEEE Trans. Ind. Appl., 47 (2), pp. 831-840. , MarchCisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Engineering Practice, 43, pp. 109-119Cucuzzella, M., Incremona, G.P., Ferrara, A., Decentralized sliding mode control of islanded ac microgrids with arbitrary topology (2017) IEEE Transactions on Industrial Electronics, 64 (8), pp. 6706-6713Del Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., De Vries, M.M.J., Kransse, M.J., Monopoli, V.G., July, Passivity-based control by series /parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans. Control Syst. Technol., 22 (4), pp. 1310-1322Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171Jones, P.S., Davidson, C.C., Sept, Calculation of power losses for MMCbased VSC HVDC stations (2013) 2013 15th European Conference on Power Electronics and Applications (EPE)., pp. 1-10Kalla, U.K., Singh, B., Murthy, S.S., Dec, Intelligent neural network-based controller for single-phase wind energy conversion system using twowinding self-excited induction generator (2016) IEEE Trans. Ind. Inf., 12 (6), pp. 1986-1997Khodaei, A., Bahramirad, S., Shahidehpour, M., Microgrid planning under uncertainty (2014) IEEE Transactions on Power Systems, 30 (5), pp. 2417-2425Khodaei, A., Shahidehpour, M., Microgrid-based co-optimization of generation and transmission planning in power systems (2013) IEEE Transactions on Power Systems, 28 (2), pp. 1582-1590Martínez-Pérez, I., Espinosa-Perez, G., Sandoval-Rodríguez, G., Doria-Cerezo, A., IDA Passivity-Based Control of single phase back-to-back converters (2008) IEEE International Symposium on Industrial Electronics, (2), pp. 74-79Montoya, O.D., Garces, A., Serra, F.M., Magaldi, G., Feb, Apparent power control in single-phase grids using sces devices: An ida-pbc approach (2018) 2018 IEEE 9th Latin American Symposium on Circuits Systems (LASCAS)., pp. 1-4Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) Journal of Energy Storage, 16, pp. 259-268Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) Journal of Energy Storage, 16, pp. 250-258Montoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Transactions on Circuits and Systems II: Express Briefs, pp. 1-1Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., May, Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Latin America Transactions, 15 (5), pp. 890-900Ortega, A., Milano, F., Sept, Generalized model of vsc-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: A review (2015) IEEE Access, 3, pp. 890-925Perez, M., Ortega, R., Espinoza, J.R., Nov, Passivity-based PI control of switched power converters (2004) IEEE Trans. Control Syst. Technol., 12 (6), pp. 881-890Perko, L., Differential equations and dynamical systems (2013) Texts in Applied Mathematics, , https://books.google.com.co/books?id=VFnSBwAAQBAJ, Springer New YorkRezaei, M.M., Soltani, J., A robust control strategy for a grid-connected multi-bus microgrid under unbalanced load conditions (2015) International Journal of Electrical Power & Energy Systems, 71, pp. 68-76Serra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19Tenfen, D., Finardi, E.C., A mixed integer linear programming model for the energy management problem of microgrids (2015) Electric Power Systems Research, 122, pp. 19-28Vasquez, J.C., Guerrero, J.M., Miret, J., Castilla, M., Vicuña, L.G.D., Hierarchical control of intelligent microgrids (2010) IEEE Industrial Electronics Magazine, pp. 23-29. , December 2010http://purl.org/coar/resource_type/c_6501ORIGINALDOI10_4995riai_2018_10666.pdfapplication/pdf3122907https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/1/DOI10_4995riai_2018_10666.pdf214f1e9e809bd2c88735ba913c8804acMD51TEXTDOI10_4995riai_2018_10666.pdf.txtDOI10_4995riai_2018_10666.pdf.txtExtracted texttext/plain51394https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/4/DOI10_4995riai_2018_10666.pdf.txtb739db1300e68230a2ce23ce52559561MD54THUMBNAILDOI10_4995riai_2018_10666.pdf.jpgDOI10_4995riai_2018_10666.pdf.jpgGenerated Thumbnailimage/jpeg92232https://repositorio.utb.edu.co/bitstream/20.500.12585/8724/5/DOI10_4995riai_2018_10666.pdf.jpgde5369e8d385e8a68674f791a2f947ffMD5520.500.12585/8724oai:repositorio.utb.edu.co:20.500.12585/87242023-05-26 10:21:20.491Repositorio Institucional UTBrepositorioutb@utb.edu.co