Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory

In this paper, a complete kinematic analysis of a planar 3-RRR parallel robot is presented. The position through the direct and inverse kinematics, velocities, jacobians and accelerations were developed using Screw Theory. Likewise, the workspace and singularities analysis is performed to find the s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9200
Acceso en línea:
https://hdl.handle.net/20.500.12585/9200
Palabra clave:
Kinematic redundancy
Parallel robot
Performance Indexes
Screw theory
Singularity
Inverse kinematics
Redundancy
Redundant manipulators
Robotics
Screws
Sensitivity analysis
Kinematic redundancy
Parallel robots
Performance indices
Screw theory
Singularity
End effectors
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_77a6e53d6c3b8ee3cbb9d5bc2d68e29c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9200
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
title Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
spellingShingle Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
Kinematic redundancy
Parallel robot
Performance Indexes
Screw theory
Singularity
Inverse kinematics
Redundancy
Redundant manipulators
Robotics
Screws
Sensitivity analysis
Kinematic redundancy
Parallel robots
Performance indices
Screw theory
Singularity
End effectors
title_short Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
title_full Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
title_fullStr Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
title_full_unstemmed Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
title_sort Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theory
dc.contributor.editor.none.fl_str_mv Garcia L.
Wightman P.
Percybrooks W.
Carrillo H.
Quintero C.
dc.subject.keywords.none.fl_str_mv Kinematic redundancy
Parallel robot
Performance Indexes
Screw theory
Singularity
Inverse kinematics
Redundancy
Redundant manipulators
Robotics
Screws
Sensitivity analysis
Kinematic redundancy
Parallel robots
Performance indices
Screw theory
Singularity
End effectors
topic Kinematic redundancy
Parallel robot
Performance Indexes
Screw theory
Singularity
Inverse kinematics
Redundancy
Redundant manipulators
Robotics
Screws
Sensitivity analysis
Kinematic redundancy
Parallel robots
Performance indices
Screw theory
Singularity
End effectors
description In this paper, a complete kinematic analysis of a planar 3-RRR parallel robot is presented. The position through the direct and inverse kinematics, velocities, jacobians and accelerations were developed using Screw Theory. Likewise, the workspace and singularities analysis is performed to find the smallest set of active joints for which the planar 3-RRR parallel robot remains equilibrated with respect to dexterous workspace, when failure occurs for one arbitrary active joint in a safe region. In order to accomplish this, sensitivity analysis for a classic trajectory and performance indexes for redundant planar 3-RRR parallel robot were obtained and compared with the same generation of non-redundant one, to validate the dexterity and manipulability of the mechanism. The simulation results show the maps of the dexterous workspace which the End-Effector can reach when there is redundant or non-redundant kinematics in the robot. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:12Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:12Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 2018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018
dc.identifier.isbn.none.fl_str_mv 9781538684641
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9200
dc.identifier.doi.none.fl_str_mv 10.1109/CCRA.2018.8588123
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57205662246
55498635300
57205658483
22837432800
identifier_str_mv 2018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018
9781538684641
10.1109/CCRA.2018.8588123
Universidad Tecnológica de Bolívar
Repositorio UTB
57205662246
55498635300
57205658483
22837432800
url https://hdl.handle.net/20.500.12585/9200
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 1 November 2018 through 3 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060995887&doi=10.1109%2fCCRA.2018.8588123&partnerID=40&md5=d8e0b19f811f9c030ec656bedf4d6704
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 2nd IEEE Colombian Conference on Robotics and Automation, CCRA 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9200/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021795417686016
spelling Garcia L.Wightman P.Percybrooks W.Carrillo H.Quintero C.Rodelo M.Villa Ramírez, José LuisDuque Pardo, Jorge EliécerYime E.2020-03-26T16:33:12Z2020-03-26T16:33:12Z20182018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 20189781538684641https://hdl.handle.net/20.500.12585/920010.1109/CCRA.2018.8588123Universidad Tecnológica de BolívarRepositorio UTB57205662246554986353005720565848322837432800In this paper, a complete kinematic analysis of a planar 3-RRR parallel robot is presented. The position through the direct and inverse kinematics, velocities, jacobians and accelerations were developed using Screw Theory. Likewise, the workspace and singularities analysis is performed to find the smallest set of active joints for which the planar 3-RRR parallel robot remains equilibrated with respect to dexterous workspace, when failure occurs for one arbitrary active joint in a safe region. In order to accomplish this, sensitivity analysis for a classic trajectory and performance indexes for redundant planar 3-RRR parallel robot were obtained and compared with the same generation of non-redundant one, to validate the dexterity and manipulability of the mechanism. The simulation results show the maps of the dexterous workspace which the End-Effector can reach when there is redundant or non-redundant kinematics in the robot. © 2018 IEEE.This Project is partially founded by Universidad Tecno-logica de Bolivar through the project Modelado dinámico y simulación de un robot paralelo 3RRR planar en condiciones sub-acuáticas para rehabilitación pediátrica de marcha.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060995887&doi=10.1109%2fCCRA.2018.8588123&partnerID=40&md5=d8e0b19f811f9c030ec656bedf4d67042nd IEEE Colombian Conference on Robotics and Automation, CCRA 2018Kinematic Analysis and Performance of a Planar 3RRR Parallel Robot with Kinematic Redundancy using Screw Theoryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fKinematic redundancyParallel robotPerformance IndexesScrew theorySingularityInverse kinematicsRedundancyRedundant manipulatorsRoboticsScrewsSensitivity analysisKinematic redundancyParallel robotsPerformance indicesScrew theorySingularityEnd effectors1 November 2018 through 3 November 2018Prajapati, J.M., Kinematics of parallel mechanism based robot manipulator with passive joints variables (2015) 2015 International Conference on Control, Automation and Robotics, Singapore, pp. 14-17Farhadmanesh, M., Abedloo, E., Molaei, A., Dynamics formulation and motion control of a planar parallel manipulator (2015) 3rd RSI International Conference on Robotics and Mechatronics (ICROM) Tehran 2015, pp. 205-209Assal, S.F.M., Non-singular 3-DOF planar parallel manipulator with high orientational capability for a hybrid machine tool (2013) 16th International Conference on Advanced Robotics (ICAR) Montevideo 2013, pp. 1-6Wu, G., Bai, S., Hjrnet, P., On the stiffness of three/four degree-offreedom parallel pick-And-place robots with four identical limbs (2016) IEEE International Conference on Robotics and Automation (ICRA) Stockholm 2016, pp. 861-866Merlet, J.P., On the workspace of suspended cable-driven parallel robots 2016 (2016) IEEE International Conference on Robotics and Automation (ICRA) Stockholm, pp. 841-846Ordoez, N.A., Rodrguez, C.F., (2013) Real-Time Dynamic Control of A Stewart Platform"", Applied Mechanics and Materials, 390, pp. 398-402Gomez Becerra, F.A., Blanco Ortega, A., Olivares, P.C.D., Garcia, B.V.H., Guzman, C., Valdivia ""design and control of a new parallel robot for the rehabilitation of the hip-knee (2018) IEEE Latin America Transactions, 16 (5), pp. 1314-1319. , MayPile, J., Simaan, N., Modeling design and evaluation of a parallel robot for cochlear implant surgery (2014) IEEE/ASME Transactions on Mechatronics, 19 (6), pp. 1746-1755. , DecGosselin, C., Schreiber, L.T., Kinematically redundant spatial parallel mechanisms for singularity avoidance and large orientational workspace (2016) IEEE Transactions on Robotics, 32 (2), pp. 286-300. , AprilKern Molina, J., Jamett Dominguez, M., Urrea Onate, C., Torres, H., Salamea ""development of a neural controller applied in a 5 DOF robot redundant (2014) IEEE Latin America Transactions, 12 (2), pp. 98-106. , MarchHeiran, F., Abadi, B.N.R., Taghvaei, S., Vatankhah, R., Kinematics and workspace analysis of a novel parallel mechanism with kinematic redundancy 2017 5th International Conference on Control (2017) Instrumentation, and Automation (ICCIA), Shiraz, pp. 325-330Featherstone, R., (2008) Rigid Body Dynamics Algorithms, , Springer New YorkFeatherstone, R., Plucker basis vectors (2006) Proceedings 2006 IEEE International Conference on Robotics and Automation 2006, pp. 1892-1897. , ICRA 2006., Orlando, FLTsai, L., (1999) Robot Analysis and Design: The Mechanics of Serial and Parallel Manipulators, pp. 125-129. , John Wiley Sons, Inc., New York, NYGosselin, C.M., Sefrioui, J., Polynomial solutions for the direct kinematic problem of planar three-degree-of-freedom parallel manipulators Advanced Robotics 1991 Robots in Unstructured Environments, 91 ICAR., Fifth International Conference On, Pisa, Italy, 1991, 2, pp. 1124-1129Cardona, M.N., Gutierrez ""dimensional synthesis of 3rrr planar parallel robots for well-conditioned workspace (2015) IEEE Latin America Transactions, 13 (2), pp. 409-415. , FebAref, M.M., Gholami, P., Taghirad, H.D., Dynamic and sensitivity analysis of kntu cdrpm: A cable driven redundant parallel manipulator (2008) IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications, Beijing 2008, pp. 528-533Wu, G., Bai, S., Hjrnet, P., On the stiffness of three/four degree-offreedom parallel pick-And-place robots with four identical limbs (2016) IEEE International Conference on Robotics and Automation (ICRA) Stockholm 2016, pp. 861-866Chen, Y., Liu, X., Chen, X., Dimension optimization of a planar 3-RRR parallel manipulator considering motion and force transmissibility (2013) IEEE International Conference on Mechatronics and Automation Takamatsu 2013, pp. 670-675Lorenz, M., Brinker, J., Prause, I., Corves, B., Power manipulability analysis of redundantly actuated parallel kinematic manipulators with different types of actuators (2016) IEEE International Conference on Robotics and Automation (ICRA) Stockholm 2016, pp. 2129-2136http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9200/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9200oai:repositorio.utb.edu.co:20.500.12585/92002023-05-26 08:09:41.705Repositorio Institucional UTBrepositorioutb@utb.edu.co