A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms

The power flow equations in DC microgrids are nonlinear due to the presence of constant power terminals. In this context, a rigorous demonstration of the convergence and uniqueness of the solution for Newton’s method is required. This problem is particularly important in islanded microgrids, where t...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8950
Acceso en línea:
https://hdl.handle.net/20.500.12585/8950
Palabra clave:
Convex optimization
DC microgrids
Gradient systems
Power flow analysis
Constraint theory
Convex optimization
Nonlinear equations
Gradient systems
Inequality constraint
Micro grid
Optimization approach
Optimization modeling
Potential function
Power flow analysis
Power flow equations
Electric load flow
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_77a35ac28065831443c2a6c2052dd980
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8950
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
title A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
spellingShingle A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
Convex optimization
DC microgrids
Gradient systems
Power flow analysis
Constraint theory
Convex optimization
Nonlinear equations
Gradient systems
Inequality constraint
Micro grid
Optimization approach
Optimization modeling
Potential function
Power flow analysis
Power flow equations
Electric load flow
title_short A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
title_full A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
title_fullStr A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
title_full_unstemmed A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
title_sort A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms
dc.subject.keywords.none.fl_str_mv Convex optimization
DC microgrids
Gradient systems
Power flow analysis
Constraint theory
Convex optimization
Nonlinear equations
Gradient systems
Inequality constraint
Micro grid
Optimization approach
Optimization modeling
Potential function
Power flow analysis
Power flow equations
Electric load flow
topic Convex optimization
DC microgrids
Gradient systems
Power flow analysis
Constraint theory
Convex optimization
Nonlinear equations
Gradient systems
Inequality constraint
Micro grid
Optimization approach
Optimization modeling
Potential function
Power flow analysis
Power flow equations
Electric load flow
description The power flow equations in DC microgrids are nonlinear due to the presence of constant power terminals. In this context, a rigorous demonstration of the convergence and uniqueness of the solution for Newton’s method is required. This problem is particularly important in islanded microgrids, where the power flow method determines the equilibrium point, which in turn is used for other analyses such as stability, optimal operation, and reliability. In this paper, we present a new concept associated with power flow equations, namely the potential function of the power flow. This function allows transforming the power flow problem into an optimization model and uses convex analysis for determining its convergence and the uniqueness of the solution. Being a scalar function, the potential of the power flow can give valuable geometrical insights on the problem. In addition, the optimization approach can be used to solve the power flow problem considering inequality constraints. Simulation results demonstrate the applicability of this approach in practice. © 2019, Brazilian Society for Automatics--SBA.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:39Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:39Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Control, Automation and Electrical Systems; Vol. 30, Núm. 5; pp. 794-801
dc.identifier.issn.none.fl_str_mv 21953880
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8950
dc.identifier.doi.none.fl_str_mv 10.1007/s40313-019-00489-4
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 36449223500
56919564100
identifier_str_mv Journal of Control, Automation and Electrical Systems; Vol. 30, Núm. 5; pp. 794-801
21953880
10.1007/s40313-019-00489-4
Universidad Tecnológica de Bolívar
Repositorio UTB
36449223500
56919564100
url https://hdl.handle.net/20.500.12585/8950
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer New York LLC
publisher.none.fl_str_mv Springer New York LLC
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85068227575&doi=10.1007%2fs40313-019-00489-4&partnerID=40&md5=b842b319e00d806052713731f89fb1fc
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8950/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021586401886208
spelling 2020-03-26T16:32:39Z2020-03-26T16:32:39Z2019Journal of Control, Automation and Electrical Systems; Vol. 30, Núm. 5; pp. 794-80121953880https://hdl.handle.net/20.500.12585/895010.1007/s40313-019-00489-4Universidad Tecnológica de BolívarRepositorio UTB3644922350056919564100The power flow equations in DC microgrids are nonlinear due to the presence of constant power terminals. In this context, a rigorous demonstration of the convergence and uniqueness of the solution for Newton’s method is required. This problem is particularly important in islanded microgrids, where the power flow method determines the equilibrium point, which in turn is used for other analyses such as stability, optimal operation, and reliability. In this paper, we present a new concept associated with power flow equations, namely the potential function of the power flow. This function allows transforming the power flow problem into an optimization model and uses convex analysis for determining its convergence and the uniqueness of the solution. Being a scalar function, the potential of the power flow can give valuable geometrical insights on the problem. In addition, the optimization approach can be used to solve the power flow problem considering inequality constraints. Simulation results demonstrate the applicability of this approach in practice. © 2019, Brazilian Society for Automatics--SBA.Recurso electrónicoapplication/pdfengSpringer New York LLChttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85068227575&doi=10.1007%2fs40313-019-00489-4&partnerID=40&md5=b842b319e00d806052713731f89fb1fcA Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithmsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Convex optimizationDC microgridsGradient systemsPower flow analysisConstraint theoryConvex optimizationNonlinear equationsGradient systemsInequality constraintMicro gridOptimization approachOptimization modelingPotential functionPower flow analysisPower flow equationsElectric load flowGarcés, AlejandroMontoya O.-D.Abdali, A., Noroozian, R., Mazlumi, K., Simultaneous control and protection schemes for DC multi microgrids systems (2019) International Journal of Electrical Power & Energy Systems, 104, pp. 230-245Boyd, S., Vandenberghe, L., (2004) Convex optimization, , Cambridge University Press, New York, NYCai, H., Xiang, J., Wei, W., Chen, M.Z.Q., V-dp/dv droop control for PV sources in DC microgrids (2018) IEEE Transactions on Power Electronics, 33 (9), pp. 7708-7720Capitanescu, F., Critical review of recent advances and further developments needed in AC optimal power flow (2016) Electric Power Systems Research, 136, pp. 57-68Dastgeer, F., Gelani, H.E., Anees, H.M., Paracha, Z.J., Kalam, A., Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future (2019) International Journal of Electrical Power & Energy Systems, 104, pp. 89-100De Persis, C., Weitenberg, E.R., Dörfler, F., A power consensus algorithm for DC microgrids (2018) Automatica, 89, pp. 364-375Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electric Power Systems Research, 119, pp. 407-417Eriksson, R., Beerten, J., Ghandhari, M., Belmans, R., Optimizing DC voltage droop settings for AC/DC system interactions (2014) IEEE Transactions on Power Delivery, 29 (1), pp. 362-369Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153Garcés, A., On the convergence of Newton’s method in power flow studies for DC microgrids (2018) IEEE Transactions Power Systems, 33 (5), pp. 5770-5777Hamad, A.A., Azzouz, M.A., El-Saadany, E.F., Multiagent supervisory control for power management in DC microgrids (2016) IEEE Transactions on Smart Grid, 7 (2), pp. 1057-1068Hubbard, J.H., Hubbard, B.B., (1999) Vector calculus, linear algebra, and differential forms a unified approach, , Prentice Hall, Englewood CliffsKitson, J., Williamson, S., Harper, P., McMahon, C., Rosenberg, G., Tierney, M., Bell, K., Gautam, B., Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities (2018) Energy, 160, pp. 142-153Li, J., Liu, F., Wang, Z., Low, S., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Transactions Power Systems, , https://doi.org/10.1109/TPWRS.2018.2801280Loomis, L.H., Sternberg, S., (2014) Advanced calculus, , World Scientific, SingaporeLu, X., Sun, K., Guerrero, J.M., Vasquez, J.C., Huang, L., Wang, J., Stability enhancement based on virtual impedance for DC microgrids with constant power loads (2015) IEEE Transactions on Smart Grid, 6 (6), pp. 2770-2783Montoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model (2018) IEEE Transactions on Circuits Systems II Express Briefs, , https://doi.org/10.1109/TCSII.2018.2866447Montoya, O.D., Gil-González, W., Garces, A., Optimal power flow on DC microgrids: A quadratic convex approximation (2018) IEEE Transactions on Circuits Systems II Express Briefs, , https://doi.org/10.1109/TCSII.2018.2871432Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Transactions on Circuits and Systems II: Express BriefsNesterov, Y., Nemirovskii, A., (1994) Interior point polynomial algorithms in convex programming, 10, 1. , 1, SIAM studies applied mathematics, PhiladelphiaPatterson, B., DC, come home: DC microgrids and the birth of the “Enernet (2012) IEEE Power Energy Magazine, 10 (6), pp. 60-69Roy, T.K., Mahmud, M.A., Oo, A.M.T., Haque, M.E., Muttaqi, K.M., Mendis, N., Nonlinear adaptive backstepping controller design for islanded DC microgrids (2018) IEEE Transactions on Industrial Applications, 54 (3), pp. 2857-2873Simpson-Porco, J.W., Dorfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Transactions on Circuits Systems II Express Briefs, 62 (8), pp. 811-815Stewart, J., (2008) Multivariable Calculus, , BelmontStott, B., Jardim, J., Alsac, O., Dc power flow revisited (2009) IEEE Transactions on Power Systems, 24 (3), pp. 1290-1300Tah, A., Das, D., An enhanced droop control method for accurate load sharing and voltage improvement of isolated and interconnected DC microgrids (2016) IEEE Transactions on Sustainable Energy, 7 (3), pp. 1194-1204http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8950/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8950oai:repositorio.utb.edu.co:20.500.12585/89502023-05-26 09:51:28.905Repositorio Institucional UTBrepositorioutb@utb.edu.co