Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework

Over 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoi...

Full description

Autores:
Sánchez, S A
Campillo Jiménez, Javier Eduardo
Martínez-Santos, J C
Tipo de recurso:
Fecha de publicación:
2003
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9534
Acceso en línea:
https://hdl.handle.net/20.500.12585/9534
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003
Palabra clave:
Aprendizaje profundo
Procesamiento digital de imágenes
Accidentes de embarcaciones
Computación paralela
Procesamiento de imágenes en tiempo real
Deep learning
Digital image processing
Boat accidents
Parallel computing
Real-time image processing
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_7796ced3c466175c58f97617b17b965b
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9534
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
title Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
spellingShingle Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
Aprendizaje profundo
Procesamiento digital de imágenes
Accidentes de embarcaciones
Computación paralela
Procesamiento de imágenes en tiempo real
Deep learning
Digital image processing
Boat accidents
Parallel computing
Real-time image processing
title_short Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
title_full Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
title_fullStr Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
title_full_unstemmed Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
title_sort Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
dc.creator.fl_str_mv Sánchez, S A
Campillo Jiménez, Javier Eduardo
Martínez-Santos, J C
dc.contributor.author.none.fl_str_mv Sánchez, S A
Campillo Jiménez, Javier Eduardo
Martínez-Santos, J C
dc.subject.keywords.spa.fl_str_mv Aprendizaje profundo
Procesamiento digital de imágenes
Accidentes de embarcaciones
Computación paralela
Procesamiento de imágenes en tiempo real
Deep learning
Digital image processing
Boat accidents
Parallel computing
Real-time image processing
topic Aprendizaje profundo
Procesamiento digital de imágenes
Accidentes de embarcaciones
Computación paralela
Procesamiento de imágenes en tiempo real
Deep learning
Digital image processing
Boat accidents
Parallel computing
Real-time image processing
description Over 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoidance in passenger boats. Advances in parallel computing, graphic processing unit technology and deep learning have facilitated real-time image processing. The main objective of this study was to compare the performance metrics for different deep learning algorithms using pre-trained data sets. The algorithms used were: faster region-based convolutional neural networks, region-based fully convolutional network, and single shot multibox detector using the feature extractors: residual neural network, inception and convolutional neural networks for mobile vision applications to detect generic boats in confined waterways. These models were coded in Python programming language, using the framework Tensorflow and OpenCV library for image processing. The algorithms were pre-trained using the free images database posted on the web, Microsoft COCO. The use of these pre-trained models allowed making use of computers without graphic processing unit. As a result, it was found that the faster region-based convolutional neural networks and region-based fully convolutional network method compared to the single shot multibox detector method offer a small advantage precision if speed detection is not required, but the single shot multibox detector method is useful for case detectors in real time, however it did not perform as accurate when detecting small objects.
publishDate 2003
dc.date.issued.none.fl_str_mv 2003-01
dc.date.accessioned.none.fl_str_mv 2020-11-04T20:52:36Z
dc.date.available.none.fl_str_mv 2020-11-04T20:52:36Z
dc.date.submitted.none.fl_str_mv 2020-11-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_c94f
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9534
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003
dc.identifier.doi.none.fl_str_mv 10.1088/1742-6596/1448/1/012003
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003
10.1088/1742-6596/1448/1/012003
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9534
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Physics: Conference Series, Volume 1448, Issue 1, article id. 012003 (2020).
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/1/73.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/4/73.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/5/73.pdf.jpg
bitstream.checksum.fl_str_mv f60cdff70d87c308e69d4995dc862b84
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
f187598de3bfaf94e986563225cb573f
208efc95a52311a86e23a7593dbebb9f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021800058683392
spelling Sánchez, S A70c7186a-c74c-4c65-b094-5e61c04bf27eCampillo Jiménez, Javier Eduardo8c4725e9-5e97-40df-b9ae-f67c73617ff3Martínez-Santos, J C0d883ac1-08f4-41df-ba56-fd17ffa4ab142020-11-04T20:52:36Z2020-11-04T20:52:36Z2003-012020-11-03Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003https://hdl.handle.net/20.500.12585/9534https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/01200310.1088/1742-6596/1448/1/012003Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOver 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoidance in passenger boats. Advances in parallel computing, graphic processing unit technology and deep learning have facilitated real-time image processing. The main objective of this study was to compare the performance metrics for different deep learning algorithms using pre-trained data sets. The algorithms used were: faster region-based convolutional neural networks, region-based fully convolutional network, and single shot multibox detector using the feature extractors: residual neural network, inception and convolutional neural networks for mobile vision applications to detect generic boats in confined waterways. These models were coded in Python programming language, using the framework Tensorflow and OpenCV library for image processing. The algorithms were pre-trained using the free images database posted on the web, Microsoft COCO. The use of these pre-trained models allowed making use of computers without graphic processing unit. As a result, it was found that the faster region-based convolutional neural networks and region-based fully convolutional network method compared to the single shot multibox detector method offer a small advantage precision if speed detection is not required, but the single shot multibox detector method is useful for case detectors in real time, however it did not perform as accurate when detecting small objects.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series, Volume 1448, Issue 1, article id. 012003 (2020).Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow frameworkinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Aprendizaje profundoProcesamiento digital de imágenesAccidentes de embarcacionesComputación paralelaProcesamiento de imágenes en tiempo realDeep learningDigital image processingBoat accidentsParallel computingReal-time image processingCartagena de IndiasPúblico generalWang L & Sng D 2018 Deep learning algorithms with applications to video analytics for a smart city: A survey SciRate 11 8Val Román J L 2012 Industria 4.0. La transformación digital de la industria (Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII)Pérez E 2017 Diseño de una metodología para el procesamiento de imágenes mamográficas basada en técnicas de aprendizaje profundo (Madrid: Universidad Politécnica de Madrid)Medina C, Cuellar S & Mojica P 2017 Inteligencia artificial y control del espacio aéreo (Colombia: Superintendencia de Industria y Comercio)Department of Homeland Security and Coast Guard 2014 Accidents in small vessels Recreational Boating Statistics (United State of America: Department of Homeland Security and Coast Guard)Sundar K S, Bonta L R, Baruah P K & Sankara S S 2018 Evaluating training time of Inception-v3 and Resnet-50,101 models using TensorFlow across CPU and GPU Second International Conference on Electronics, Communication and Aerospace Technology (Coimbatore: IEEE)J Huang, et al. 2017 Speed/Accuracy trade-offs for modern convolutional object detectors Conference on Computer Vision and Pattern Recognition (Honolulu: IEEE)Rezatofighi H, et al. 2019 Generalized intersection over union: a metric and a loss for bounding box regression Conference on Computer Vision and Pattern Recognition (California: IEEE)Li Y, Huang C, Ding L, Li Z, Pan Y & Gao X 2019 Deep learning in bioinformatics: Introduction, application, and perspective in the big data era Methods 166 4Blanco-Filgueira B, et al. 2019 Deep learning-based multiple object visual tracking on embedded system for iot and mobile edge computing applications IEEE Internet of Things Journal 6(3) 5423Lin T Y, et al. 2014 Microsoft coco: Common objects in context European Conference on Computer Vision (Zurich: Springer)Redmon J & Farhadi A 2016 YOLO9000: Better, faster, stronger Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)Ren S, et al.2017 Faster R-CNN: To- wards real-time object detection with region proposal networks IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6) 1137Dai J, et al. 2016 R-FCN: Object detection region-based fully via convolutional networks 30th Conference on Neural Information Processing Systems (Barcelona: Neural Information Processing Systems)W Liu, D Angelov, D Erhan, C Szegedy 2015 SSD: single shot multibox detector CoRR Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)http://purl.org/coar/resource_type/c_c94fORIGINAL73.pdf73.pdfPonenciaapplication/pdf1485285https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/1/73.pdff60cdff70d87c308e69d4995dc862b84MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT73.pdf.txt73.pdf.txtExtracted texttext/plain20235https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/4/73.pdf.txtf187598de3bfaf94e986563225cb573fMD54THUMBNAIL73.pdf.jpg73.pdf.jpgGenerated Thumbnailimage/jpeg34706https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/5/73.pdf.jpg208efc95a52311a86e23a7593dbebb9fMD5520.500.12585/9534oai:repositorio.utb.edu.co:20.500.12585/95342023-05-25 14:55:05.72Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=