Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework
Over 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoi...
- Autores:
-
Sánchez, S A
Campillo Jiménez, Javier Eduardo
Martínez-Santos, J C
- Tipo de recurso:
- Fecha de publicación:
- 2003
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9534
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9534
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003
- Palabra clave:
- Aprendizaje profundo
Procesamiento digital de imágenes
Accidentes de embarcaciones
Computación paralela
Procesamiento de imágenes en tiempo real
Deep learning
Digital image processing
Boat accidents
Parallel computing
Real-time image processing
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7796ced3c466175c58f97617b17b965b |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9534 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
title |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
spellingShingle |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework Aprendizaje profundo Procesamiento digital de imágenes Accidentes de embarcaciones Computación paralela Procesamiento de imágenes en tiempo real Deep learning Digital image processing Boat accidents Parallel computing Real-time image processing |
title_short |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
title_full |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
title_fullStr |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
title_full_unstemmed |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
title_sort |
Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow framework |
dc.creator.fl_str_mv |
Sánchez, S A Campillo Jiménez, Javier Eduardo Martínez-Santos, J C |
dc.contributor.author.none.fl_str_mv |
Sánchez, S A Campillo Jiménez, Javier Eduardo Martínez-Santos, J C |
dc.subject.keywords.spa.fl_str_mv |
Aprendizaje profundo Procesamiento digital de imágenes Accidentes de embarcaciones Computación paralela Procesamiento de imágenes en tiempo real Deep learning Digital image processing Boat accidents Parallel computing Real-time image processing |
topic |
Aprendizaje profundo Procesamiento digital de imágenes Accidentes de embarcaciones Computación paralela Procesamiento de imágenes en tiempo real Deep learning Digital image processing Boat accidents Parallel computing Real-time image processing |
description |
Over 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoidance in passenger boats. Advances in parallel computing, graphic processing unit technology and deep learning have facilitated real-time image processing. The main objective of this study was to compare the performance metrics for different deep learning algorithms using pre-trained data sets. The algorithms used were: faster region-based convolutional neural networks, region-based fully convolutional network, and single shot multibox detector using the feature extractors: residual neural network, inception and convolutional neural networks for mobile vision applications to detect generic boats in confined waterways. These models were coded in Python programming language, using the framework Tensorflow and OpenCV library for image processing. The algorithms were pre-trained using the free images database posted on the web, Microsoft COCO. The use of these pre-trained models allowed making use of computers without graphic processing unit. As a result, it was found that the faster region-based convolutional neural networks and region-based fully convolutional network method compared to the single shot multibox detector method offer a small advantage precision if speed detection is not required, but the single shot multibox detector method is useful for case detectors in real time, however it did not perform as accurate when detecting small objects. |
publishDate |
2003 |
dc.date.issued.none.fl_str_mv |
2003-01 |
dc.date.accessioned.none.fl_str_mv |
2020-11-04T20:52:36Z |
dc.date.available.none.fl_str_mv |
2020-11-04T20:52:36Z |
dc.date.submitted.none.fl_str_mv |
2020-11-03 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9534 |
dc.identifier.url.none.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/1448/1/012003 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003 10.1088/1742-6596/1448/1/012003 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9534 https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/012003 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series, Volume 1448, Issue 1, article id. 012003 (2020). |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/1/73.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/4/73.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/5/73.pdf.jpg |
bitstream.checksum.fl_str_mv |
f60cdff70d87c308e69d4995dc862b84 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 f187598de3bfaf94e986563225cb573f 208efc95a52311a86e23a7593dbebb9f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021800058683392 |
spelling |
Sánchez, S A70c7186a-c74c-4c65-b094-5e61c04bf27eCampillo Jiménez, Javier Eduardo8c4725e9-5e97-40df-b9ae-f67c73617ff3Martínez-Santos, J C0d883ac1-08f4-41df-ba56-fd17ffa4ab142020-11-04T20:52:36Z2020-11-04T20:52:36Z2003-012020-11-03Sánchez, S. A., Campillo, J., & Martínez-Santos, J. C. (2020). Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensor flow framework. Journal of Physics: Conference Series, 1448, 012003. https://doi.org/10.1088/1742-6596/1448/1/012003https://hdl.handle.net/20.500.12585/9534https://iopscience.iop.org/article/10.1088/1742-6596/1448/1/01200310.1088/1742-6596/1448/1/012003Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOver 4515 small boat accidents were registered in the United State of America in 2012, resulting in 651 causalities and 22% of the accidents took place between two boats. It is, therefore, one of the most interesting applications for image analysis and recognition using deep learning, collision avoidance in passenger boats. Advances in parallel computing, graphic processing unit technology and deep learning have facilitated real-time image processing. The main objective of this study was to compare the performance metrics for different deep learning algorithms using pre-trained data sets. The algorithms used were: faster region-based convolutional neural networks, region-based fully convolutional network, and single shot multibox detector using the feature extractors: residual neural network, inception and convolutional neural networks for mobile vision applications to detect generic boats in confined waterways. These models were coded in Python programming language, using the framework Tensorflow and OpenCV library for image processing. The algorithms were pre-trained using the free images database posted on the web, Microsoft COCO. The use of these pre-trained models allowed making use of computers without graphic processing unit. As a result, it was found that the faster region-based convolutional neural networks and region-based fully convolutional network method compared to the single shot multibox detector method offer a small advantage precision if speed detection is not required, but the single shot multibox detector method is useful for case detectors in real time, however it did not perform as accurate when detecting small objects.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series, Volume 1448, Issue 1, article id. 012003 (2020).Use of deep learning algorithms for real-time detection of vessels in confined spaces using the Tensorflow frameworkinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Aprendizaje profundoProcesamiento digital de imágenesAccidentes de embarcacionesComputación paralelaProcesamiento de imágenes en tiempo realDeep learningDigital image processingBoat accidentsParallel computingReal-time image processingCartagena de IndiasPúblico generalWang L & Sng D 2018 Deep learning algorithms with applications to video analytics for a smart city: A survey SciRate 11 8Val Román J L 2012 Industria 4.0. La transformación digital de la industria (Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII)Pérez E 2017 Diseño de una metodología para el procesamiento de imágenes mamográficas basada en técnicas de aprendizaje profundo (Madrid: Universidad Politécnica de Madrid)Medina C, Cuellar S & Mojica P 2017 Inteligencia artificial y control del espacio aéreo (Colombia: Superintendencia de Industria y Comercio)Department of Homeland Security and Coast Guard 2014 Accidents in small vessels Recreational Boating Statistics (United State of America: Department of Homeland Security and Coast Guard)Sundar K S, Bonta L R, Baruah P K & Sankara S S 2018 Evaluating training time of Inception-v3 and Resnet-50,101 models using TensorFlow across CPU and GPU Second International Conference on Electronics, Communication and Aerospace Technology (Coimbatore: IEEE)J Huang, et al. 2017 Speed/Accuracy trade-offs for modern convolutional object detectors Conference on Computer Vision and Pattern Recognition (Honolulu: IEEE)Rezatofighi H, et al. 2019 Generalized intersection over union: a metric and a loss for bounding box regression Conference on Computer Vision and Pattern Recognition (California: IEEE)Li Y, Huang C, Ding L, Li Z, Pan Y & Gao X 2019 Deep learning in bioinformatics: Introduction, application, and perspective in the big data era Methods 166 4Blanco-Filgueira B, et al. 2019 Deep learning-based multiple object visual tracking on embedded system for iot and mobile edge computing applications IEEE Internet of Things Journal 6(3) 5423Lin T Y, et al. 2014 Microsoft coco: Common objects in context European Conference on Computer Vision (Zurich: Springer)Redmon J & Farhadi A 2016 YOLO9000: Better, faster, stronger Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)Ren S, et al.2017 Faster R-CNN: To- wards real-time object detection with region proposal networks IEEE Transactions on Pattern Analysis and Machine Intelligence 39(6) 1137Dai J, et al. 2016 R-FCN: Object detection region-based fully via convolutional networks 30th Conference on Neural Information Processing Systems (Barcelona: Neural Information Processing Systems)W Liu, D Angelov, D Erhan, C Szegedy 2015 SSD: single shot multibox detector CoRR Conference on Computer Vision and Pattern Recognition (Amsterdam: IEEE)http://purl.org/coar/resource_type/c_c94fORIGINAL73.pdf73.pdfPonenciaapplication/pdf1485285https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/1/73.pdff60cdff70d87c308e69d4995dc862b84MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT73.pdf.txt73.pdf.txtExtracted texttext/plain20235https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/4/73.pdf.txtf187598de3bfaf94e986563225cb573fMD54THUMBNAIL73.pdf.jpg73.pdf.jpgGenerated Thumbnailimage/jpeg34706https://repositorio.utb.edu.co/bitstream/20.500.12585/9534/5/73.pdf.jpg208efc95a52311a86e23a7593dbebb9fMD5520.500.12585/9534oai:repositorio.utb.edu.co:20.500.12585/95342023-05-25 14:55:05.72Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |